

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) FOR RECONSTRUCTION OF

138KM ALAOJI-ONITSHA 330kV SINGLE CIRCUIT TRANSMISSION LINE TO 330KV

DOUBLE CIRCUIT QUAD CONDUCTORS

TCN/AfDB PROJECT

ESIA REPORT

Prepared

Ibadan Oyo State

The Project Manager AfDB TCN-PIU Plot 1285, Wikki Spring Street, Maitama Extension Abuja

November, 2019

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) FOR RECONSTRUCTION OF 138KM

ALAOJI-ONITSHA TRANSMISSION LINE TO 330KV

DOUBLE CIRCUIT QUAD CONDUCTORS

A TCN/AfDB PROJECT

ESIA Report

Submitted to

The Project Implementation Unit

AfDB TCN-PIU

Plot 1285, Wikki Spring Street Maitama Extension

Abuja

Prepared by

Plot 7, Road 302, Off DPC Road, Agodi GRA, Ibadan, Oyo State, Nigeria. Tel: 08033432717,

08081160636, E-mail: admin@geomaticsng.com, Website: www.geomaticsng.com

ENVIRONMENTAL AND SOCIAL IMPACT ASSESSMENT (ESIA) FOR

RECONSTRUCTION OF 138KM ALAOJI - ONITSHA 330KV SC TRANSMISSION LINE TO 330kV DC QUAD CONDUCTORS TRANSMISSION LINE

Client: TCN

Date of Report: NOVEMBER, 2019

Project Consultant: GEOMATICS NIGERIA LIMITED

Task	Name	Function	Signature	Date
Approval	Engr. A.M. Abdulazeez	Project Manager, AfDB PIU-TCN Abuja		
External Review	Mrs C.I.B. Sako	AGM (Environment), TCN		
	Kareem A.O.	Desk Officer (E&S), TCN		
Internal Review	Dr Festus Akindunni Dr Daniel Akintunde-Alo	Project Management /Quality Assurance		
Compilation	Dr Joseph Ebigwai Dr Daniel Akintunde-Alo	BSIA Coordinators		
Version	Status			
1	Draft ESIA Report		AUGUST, 2019	
2	ESIA	A Report	NOVEMBER, 2019	

Geomatics Quality Assurance:

TABLE OF CONTENTS

Cover Page	
Title Page	i
Table of Contents	iii
List of Tables	х
List of Figures	XV
List of Plates	xvi
List of Abbreviations	xvii
Executive Summary	xxiv

CH	IAP	TE	R (DΝ	Ε
INT		וחו	IC.	τις	N

INTRODUCTION	1
1.1 Background Project Information	1
1.2 The Proponent	2
1.3 Purpose of the ESIA Report	3
1.4 Objectives of the ESIA	3
1.5 Scope of the Study	4
1.6 Project Justification	5
1.7 Summary of the Key Activities Undertaken in Line with the EIA Procedures in Nigeria	6
	0

CHAPTER TWO

LEGAL AND REGULATORY FRAMEWORK	10
2.1 Introduction	10
2.2 National Environmental & Social Policies	10
2.2.1 National Policy on the Environment (1988)	10
2.2.2 EIA Act Cap E12 LFN 2004	11
2.2.3 National Environmental Standards and Regulations Enforcement Agency	
(NESREA) Act 2007	12
2.2.4 National Environmental Protection (Management of Solid and Hazardous	
Wastes) Regulations, 1991	12
2.2.5 National Environmental (Sanitation and Wastes Control) Regulations, 2009	12
2.2.6 National Environmental Protection (Pollution Abatement in Industries and	
Facilities Generating Wastes) Regulations, 1991	12
2.2.7 National Environmental (Electrical/Electronic Sector) Regulations, 2011	13
2.2.8 National Environmental (Noise Standards and Control) Regulations, 2009	13
2.2.9 National Environmental (Surface & Groundwater Quality Control) Regulations	
2011	13
2.2.10 Land Use Act CAP L5 LFN 2004	13

2.2.11 Other Applicable National E&S Legal Provisions	14
2.2.12 Energy Sector Policies and Legal Provisions	16
2.2.13 Nigerian Gender Related Policies	18
2.2.14 Nigerian Institutional Provision and Arrangement	19
2.3 Affected States Environmental Laws	22
2.4 Abia, Anambra and Imo States Affected LGAs Bye Laws on Environment	23
2.5 International Conventions and Agreements applicable to the sector	24
2.6 The African Development Bank (AFDB)	28
2.6.1 The Integrated Safeguards Policy Statement	28
2.6.2 Operational Safeguards (OSs)	29
2.6.3 Environmental and Social Assessment Procedures (ESAPs)	30
2.6.4 E&S Assessment of Nigeria Policies and Legislations and AfDB Safeguard Sy	vstem 30
2.7 TCN's HSEQ POLICY	35
2.8 Institutional and Administrative Framework	36
2.8.1 The Federal Government of Nigeria	36
2.8.2 Federal Ministry of Environment 2.8.3 Transmission Company of Nigoria (TCN)	30 36
2.9.4 Draiget Implementation Unit	30 27
2.8.5 BEDC Electricity Plc	37 37
2.8.6 Imo State Ministry of Potroloum and Environment (ISMPEnv)	38
2.8.7 Abia State Ministry of Petroleum and Environment (ISMP Env)	1)
(AbSMPPUD)	38
2.8.8 Anambra State Environmental Protection Agency (AnSEPA)/ Imo Stat	/ironmental
Protection Agency (ISEPA)/ Abia State Environmental Protection Agency (A	ASEPA)38
2.8.9 Abia State Ministry of Transport (ASMT)/ Anambra State Ministry of Transp	ort
(AnSMI)	39
2.8.10 Abla State Ministry of Environment (ASMENV)	39
2.0.11 Analitida State Ministry of Environment (AnSMEIN) 2.8.12 Abia State Ministry of Women Affairs (ASMWA)/ Ime State Ministry of Heal	ა9 I h
Women Affairs and Social Development (ISMHWASD)	40
2.8.13 Anambra State Ministry of Lands, Survey and Town planning (AnSMLST),	/ Imo
State Ministry of Land Survey Housing and Urban Planning (ISMLSHUP)	40
2.8.14 Local Government Areas (LGAs)	40
2.8.15 The Customary District Councils	41
2.9 ESIA Terms of Reference	41
CHAPTER THREE	
PROJECT JUSTIFICATION AND ALTERNATIVES	42
3.0 Introduction	42
3.1 Project Justification	42
3.2 Benefits of the Project	43
3.3 Envisaged sustainability	
3 3 1 Technical Sustainability	ד- עז
	υ

3.3.2 Economic Sustainability	44
3.3.3 Environmental Sustainability	44
3.3.4 Social Sustainability	45
3.4 Project Alternatives	45
3.4.1 Do Nothing Options	45
3.4.2 Delayed Project Option	46
3.4.3 Project Implementation Option	46
3.5 Analysis of Alternatives	46
3.5.1 Design/ Technology Alternatives	46
3.5.2 Foundation Alternative	48
3.5.3 Conductors Alternatives	48
3.5.4 Number of Circuits Alternatives	49
3.5.5 Towers Types (Tubular/Lattice) Alternatives	49

CHAPTER FOUR	
PROJECT DESCRIPTION	51
4.1 Introduction	51
4.2 Project Locations	53
4.3 Design Objectives	53
4.4 Project Scope	54
4.5 General Layout of the Transmission Line	54
4.6 Land Take	55
4.7 Safety Criteria	55
4.8 Design Conditions	55
4.9 Grounding	56
4.10 Conductor Type	57
4.10.1 Protective Wires	57
4.10.2 Line Insulation and Fittings	58
4.10.3 Protection and Earthing System Design	58
4.10.4 RoW and Access Corridor Condition and Operation	59
4.10.5 Access Tracks	60
4.11 Decommissioning of Existing Line	60
4.11.1 Dismantling of Tower and Tower Foundation	60
4.11.2 Unstringing of Conductors	61
4.12 Construction of Power Line	61
4.12.1 Site Survey	61
4.12.2 Lay – Down Area and Utilities	61
4.12.3 Temporary Site Facilities	62
4.12.4 Towers	62
4.12.5 Bulk Earthworks and Site Leveling	63

4.12.5 Bulk Earthworks and Site Leveling

6.2.10 Hydrobiology	121
6.3 Biological Environment	146
6.3.1 Habitat Types and Flora Studies	147
6.3.2 Hepatofauna	159
6.3.3 Protected Areas	178
6.3.4 Key Ecological Problems	178

6.4 Social Environment	179
6.4.1 Political Context and Administrative Structure	179
6.4.2 Land Planning and Uses	181
6.4.3 Demography	181
6.4.4 Relevant Livelihood Indices of the Project Area	182
6.4.5 Community and Household Consultation	183
6.4.6 Conflict Resolution	184
6.4.7 Household and Community Characteristics	184
6.4.8 Population and Sex	185
6.4.9 Gender of Head of Households	186
6.4.10 Marital Status of Head of Households	187
6.4.11 Nature of Marriages	189
6.4.12 Household Size	190
6.4.13 Ethnic Composition	192
6.4.14 Religion	194
6.4.15 Existing Infrastructures	195
6.4.16 Household Construction Materials	200
6.4.17 Transport Facilities	204
6.4.18 Communication Facilities	206
6.4.19 Health	206
6.4.20 Land Use	210
6.4.21 Educational Attainment	212
6.4.22 Economic and Livelihood of Households	213
6.4.23 Artisanal Skills	215
6.4.24 Income	216
6.4.25 Household's Main Source of Energy	221
6.4.26 Household's Main Source of Potable Water	224
6.4.27 Waste Disposal by Households	224
6.4.28 Community Buildings within the Wayleave	226
6.4.29 Vulnerable Groups	226
6.4.30 Cultural Heritage Resources	228
6.4.31 Gender Issues	228

CHAPTER SEVEN

STAKEHOLDER CONSULTATION	231
7.1 Consultation of Stakeholders	231
7.1.1 Invitation to Scoping Workshop and Notification of Project	231
7.1.2 Stakeholders Information and Consultation Rounds	232
7.1.3 Grievance Management Mechanism	256

CHAPTER EIGHT

IMPACT ASSESSMENT AND MITIGATION MEASURES	259
8.1 Introduction	259
8.2 Impact Assessment Methodology	261
8.3 Definition of Impact Terminologies	261
8.4 Approach to Mitigation Measures	267
8.5 Residual Impact Assessment	268
8.6 Potential Impacts during Pre-construction Stage	269
8.6.1 Impacts on Air Quality	269
8.6.2 Impacts on Ambient Noise Level	270
8.6.3 Impacts on Soil Geology	272
8.6.4 Impacts on Surface and Groundwater	273
8.6.5 Impacts on Biodiversity	275
8.6.6 Impacts on Land Use	276
8.6.7 Impacts on Community Infrastructure, Socio-cultural and Head Status	277
8.6.8 Impacts on Traffic and Safety	279
8.6.9 Impacts on Employment and Opportunities	281
8.7 Construction Phase Impacts and Mitigation Measures	282
8.7.1 Impacts on Ambient Air Quality	282
8.7.2 Impacts on Ambient Noise Level	286
8.7.3 Impacts on Soil and Geology	287
8.7.4 Impacts on Water Resources	289
8.7.5 Impacts on Aquatic Species	291
8.7.6 Impacts on Biodiversity	292
8.7.7 Community Agitation	293
8.7.8 Impacts on Socio-economic	295
8.7.9 Visual Impacts	302
8.7.10 Impact on Workplace Health and Safety	303
8.8 Impacts and Mitigation Measures During Operation Phase	305
8.8.1 Impact on Ambient Noise Level	305
8.8.2 Impact on Soil and Geology	307
8.8.3 Impact on Socio-Economic	308
8.8.4 Impact on Biodiversity	311
8.8.5 Impact on Health, Safety and Security	313
8.8.6 Impact on Surface Water quality	314
8.9 Impacts and Mitigation Measures During Decommissioning Phase	315
8.10 Cumulative Impacts	316
8.10.1 Defining Cumulative Impacts	316

8.10.2 Identification of Relevant Development(s)	317
8.10.3 Summary of Cumulative Impacts	318
CHAPTER NINE	
ENVIRONMENTAL AND SOCIAL MANAGEMENT PLAN	319
9.1 Introduction	319
9.2 Objectives of the ESMP	320
9.3 Institutional Framework for Implementation of the ESMP	320
9.3.1 Project Proponent (TCN)	323
9.3.2 Project Implementation Unit (PIU)	323
9.3.3 TCN Environmental Division	324
9.3.4 Regulatory Agencies and Other Concerned Authorities	324
9.4 Management Subplans/Programs	365
9.4.1 Air Quality management Program	366
9.4.2 Water Resources Management	371
9.4.3 Waste management Plan	380
9.4.4 Biodervisity management Program	390
9.4.5 Community Health and Safety management Plan	397
9.4.6 Traffic management Program	408
CHAPTER TEN	
CONCLUSION	417
10.1 CONCLUSION	417
REFERENCES	418
APPENDICES	421

LIST OF TABLES

Table 1.1:	Proponents Contact Details	3
Table 1.2:	ESIA Process in Nigeria in Activities Undertaken so far	6
Table 1.3:	Structure of Report	8
Table 2.1:	Other Relevant National E&S Laws and Regulations	14
Table 2.2:	Right of Way of Transmission Lines in Nigeria	17
Table 2.3	Applicable Environmental Laws	22
Table 2.4:	Selected International Agreements and Conventions to which Nigeria is a	
	Signatory	24
Table 2.5:	WHO and FMEnv Regulatory Standards	25
Table 2.6:	WHO Guidelines for Community Noise	26
Table 2.7:	AfDB Operational Safeguards OS1-5	29
Table 2.8:	Benchmarking of Nigerian Legal Provisions and AfDB ISS Specifications	31
Table 3.1:	Over Head versus Underground Transmission Line Cables	47
Table 3.2:	Foundation Alternatives	48
Table 3.3:	Conductors Type Alternatives Considered	48
Table 3.4:	Number of Circuit Alternatives	49
Table 3.5:	Tower Types Alternatives	50
Table 4.1:	Administrative Units Traversed by the Alaoji-Onitsha TL	52
Table 4.2:	Environmental Design Conditions	55
Table 4.3:	Summary of the Design Life and Reliability Requirements	56
Table 4.4:	Conductor Types	57
Table 4.5:	Safety Heights and Distances for Power Lines	64
Table 4.6:	Types, Quantity and Sources of Project Requirements during the	
	Pre-construction, Construction, Operation and Decommissioning Phases	
	Required for the Project	65
Table 4.7:	Details of Estimated Quantity and Types of Equipment/Vehicles Required	
	For the Project	71
Table 4.8:	Details of Estimated GHG to be emitted during TL Decommissioning	72
Table 4.9:	Details of Estimated GHG to be emitted during TL Construction	73
Table 4.10:	Energy Consumption Rates, Activities and Consequence Annual CO ₂	
	Emitted in the Affected LGAs in both States	74
Table 4.11:	Details on CO ₂ Emission in the Project Area from Household Fuel Wood	
	Consumption for Cooking	76
Table 4,12	Total MTCO ₂ Equivalence	76
Table 4.13:	Project Schedule for Alaoji-Onitsha Transmission Line	79

Geomatics Nigeria

Table 6.1:	Summary of Data Collected for ESIA of Ukanafun	87
Table 6.2:	Climatic Data of Abia, Anambra and Imo States	91
Table 6.3:	Result of On-Site Meteorological Measurement	92
Table 6.4	List of Air and Noise Quality Equipment Used in the Study	95
Table 6.5:	Air Quality /Noise Sampling Locations	98
Table 6.6:	Summarized Air Quality Result	100
Table 6.7:	Noise and EMF Measurements in the Study Area	102
Table 6.8:	Summarized Physico-chemical Results of Soils	108
Table 6.9:	Microbial – Waste Substrate Matrix	110
Table 6.10:	Physico – chemical Results for Groundwater	114
Table 6.11:	Phytoplankton Assemblage Across all Sampling Stations	122
Table 6.12	Zooplankton Assemblage Across all Sampling Stations	125
Table 6.13:	Benthos Assemblage Across all Sampling Stations	128
Table 6.14:	Summarized Surface Water Physico-chemical Characteristics	131
Table 6.15:	Surface Water Microbiology Result	134
Table 6.16:	Substrate Matrix for Surface Water Microbial Species	136
Table 6.17:	Result for Sediment Physico-chemical Results	139
Table 6.18:	Microbial Species Observed in the Surface Water Samples	140
Table 6.19:	Fish Composition of the Project Area	143
Table 6.20:	Computed LWR for Fish Species Obtained from Markets in the Study Area	144
Table 6.21:	Biodiversity Survey Methods and Procedures	148
Table 6.22:	Species Richness per Habitat	152
Table 6.23:	Threats and Conservation Actions of the Threatened Plant Taxa of the	
	Study Area	155
Table 6.24:	Ecologically Sensitive Species and Their Locations	155
Table 6.25:	Plant Species and Their Indigenous Uses	156
Table 6.26:	Sampling Methods used for the Herpetofauna Groups	160
Table 6.27:	Herpetofauna Check List	161
Table 6.28:	Check List of Bird Species in the Project Area	167
Table 6.29:	Details of Migratory Birds Censored in the Project Area	171
Table 6.30:	Raptors of the Study Area	172
Table 6.31:	Ecologically Important Habitat for Birds	172
Table 6.32:	Sampling Methods Used for the Mammalian Groups	174
Table 6.33:	Result of Mammalian Fauna in the Study	175
Table 6.34:	Administrative Structure	179
Table 6.35:	Demographic Information of the Project Area	181
Table 6.36:	Relevant Livelihood Indices of the Project States	182
Table 6.37:	Respondent Population Age and Sex	185
Table 6.38:	Gender of Head of Respondent Households of Project Communities	186
Table 6.39:	Marital Status of Heads of Household of Project Communities	188

Table 6.40:	Nature of Marriages among Households	189
Table 6.41:	Household Size of Communities in the Project Area	190
Table 6.42:	Ethnic Groups of the Project Area	192
Table 6.43:	Educational Facilities in the Project Area	195
Table 6.44:	Number of Water Sources across the Project Area	197
Table 6.45:	Household Facilities among Respondents	198
Table 6.46:	Roofing Materials in Communities Across the Project Area	200
Table 6.47:	Walling Materials of Respondent Houses in the Project Area	202
Table 6.48:	Flooring Materials of Respondent Houses in the Project Area	203
Table 6.49:	Details of Roads in the Project Area	205
Table 6.50:	Number of Health Facilities in Host Communities of the Project Area	207
Table 6.51:	Prevalence of Diseases in the Project Area	208
Table 6.52:	Land Use Pattern of the Project Area	210
Table 6.53:	Educational Attainment among Respondents in the Project Area	212
Table 6.54:	Occupational Distribution of Respondents in the Study Area	213
Table 6.55:	Population with Skills Related to TCN Work in the Project Area	215
Table 6.56:	Income Level in the Project Area	218
Table 6.57:	Respondents Households' Main Source Of Energy (%)	221
Table 6.58:	Proportion of Vulnerable Groups in the Project Area	226
Table 6.59:	Gender Parameters in Project Area	228
Table 7.1:	Identified Stakeholders	231
Table 7.2:	Stakeholder Engagement Process for Each Consultation Round	234
Table 8.1:	Indicative Project Activities and Environmental /Social Receptors Assessed	259
Table 8.2:	Definition of Impacts	261
Table 8.3:	Explanation of Terms Used for Likelihood of Occurrence	264
Table 8.4:	Impact Evaluation Criteria and Ratings	265
Table 8.5a:	Significance Level Categories	267
Table 8.5b:	Residual Impact Assessment Method	268
Table 8.6:	Impacts on Ambient Air Quality during Preconstruction Phase	269
Table 8.7:	Assessment of Impacts and Mitigation Measures on Ambient Noise Impact	
	during Initial Decommission and Preconstruction Phase	271
Table 8.8:	Soil and Geology Impacts during Initial Decommission and Preconstruction Phase	272
Table 8.9:	Impacts on Water Resources during Initial Decommission and	
	Preconstruction Phase	273
Table 8.10:	Biodiversity Impacts during Initial Decommission and Preconstruction Phase	275
Table 8.11:	Land Use Impacts during Initial Decommission and Preconstruction Phase	277
Table 8.12:	Impacts on Community Socio-Cultural and Health Status	278
Table 8.13:	Impacts on Traffic and Safety	280

Table 8.14:	Impacts on Employment and Opportunities	281
Table 8.15:	Impacts on Ambient Air Quality	282
Table 8.16:	Total GHG Emission from Activities Related to the Project	285
Table 8.17:	Impacts on Ambient Noise Level	286
Table 8.18:	Impacts on Soil and Geology	287
Table 8.19:	Impacts on Water Resources	289
Table 8.20:	Impacts on Aquatic Species	291
Table 8.21:	Impacts on Biodiversity	292
Table 8.22:	Impacts on Community Agitation	294
Table 8.23:	Impacts on Socio-Economic	295
Table 8.24:	Impacts on Socio-Infrastructure	297
Table 8.25:	Impacts on Accidents, Kidnappings and Traffic Congestion	298
Table 8.26:	Impacts on Employment Opportunities	300
Table 8.27:	Impacts on Loss of Employment	301
Table 8.28:	Assessment of Visual Impacts	302
Table 8.29:	Assessment of Impacts on Workplace Health and Safety	303
Table 8.30:	Impacts on Ambient Noise Level	306
Table 8.31:	Impacts on Soil and Geology	307
Table 8.32:	Impacts on Socio-Economic	309
Table 8.33:	Impacts on Row Encroachment	310
Table 8.34:	Impacts on Biodiversity	311
Table 8.35:	Impacts on Health, Safety and Security	313
Table 8.36:	Impacts on Surface Water Quality	314
Table 9.1:	Project Implementation Unit (PIU), The TCN and the Contractors	324
Table 9.2:	Responsibilities for Implementation and Monitoring of Mitigation Measure	
	During Initial Decommission and Construction Phase	331
Table 9.3:	Responsibilities for Implementation and Monitoring of Mitigation Measure	
	(Operations Phase)	352
Table 9.4:	Environmental and Social Monitoring Plan during Construction Phase and	
	Operation Phases of the Project	362
Table 9.5:	Air Quality Management Program – Actions, Description and Implementation	
	Schedule	367
Table 9.6:	Air Quality Management Program - Follow-Up and Monitoring Actions, Description	
	and Implementation Schedule	369
Table 9.7:	Performance Indicators for Air Quality Management Program	370
Table 9.8:	Record Documents for the Air Quality Management Program	371
Table 9.9	Control and Mitigation Measures to be applied during Construction	372
Table 9.10:	Water Resources Management Program - Actions, Description	
	and Implementation Schedule	375

Table 9.11:	Water Resources Management Program – Remedial Actions, Description	
	and Implementation Schedule	376
Table 9.12:	Performance Indicators for Water Resources Management Program	378
Table 9.13:	Record Documents for the Water Resources ManagementProgram	379
Table 9.14:	Waste Management Actions	381
Table 9.15:	Waste Management Follow-Up Actions	387
Table 9.16:	Waste Management Plan - Corrective Actions, Description and	
	Implementation Schedule	388
Table 9.17:	Performance Indicators for Waste Management Plan	388
Table 9.18:	Record Documents for the Waste Management Plan	389
Table 9.19:	Biodiversity Monitoring and Management Actions, Description and Implementation	I
	Schedule	392
Table 9.20:	Corrective Actions, Description and Implementation Schedule	395
Table 9.21:	Performance Indicators for Biodiversity Management Program	396
Table 9.22:	Record Documents for the Biodiversity Management Program	397
Table 9.23:	Community Health and Safety Management Plan Actions, Description	
	Implementation Schedule	398

LIST OF FIGURES

Figure 1.1:	Existing On-Going and Completed Transmission and System Operation	
	Infrastructure	5
Figure 2.1:	Structure of the AfDB ISS	28
Figure 3.1:	National Demand Forecast of Nigeria	44
Figure 4.1:	Project Location Map	51
Figure 4.2:	Map of Project Area Showing Affected Communities and LGAs	54
Figure 4.3:	RoW Clearance Along the Transmission Line	59
Figure 4.4:	Map of Road Network for the TL	69
Figure 5.1:	Map of the Project Area Showing the Area of Influence	84
Figure 6.1:	Location of the Proposed Line Route	86
Figure 6.2:	Map howing Topography of Nigeria and the Project Area	93
Figure 6.3:	Topographic Map of the Project Area in 3D	94
Figure 6.4:	Map Showing Air Quality /Noise/Soil Sampling Locations	97
Figure 6.5:	Geologic Map of Nigeria Showing the Study Area	103
Figure 6.6:	Soil Zones and Types in Nigeria in Relation to the Project Location	105
Figure 6.7:	Groundwater Sampling Stations and Coordinates	113
Figure 6.8:	DNigeria Drainage System	117
Figure 6.9:	Surface Water, Sediment and Hydrobiology Sampling Points	120
Figure 6.10:	Map Showing Different Vegetation Belts of Nigeria	147
Figure 6.11:	Vegetation Sampling Points	150
Figure 6.12:	Observation Points for Birds	166
Figure 6.13:	Religion of the Study Area	194
Figure 6.14:	Land Use Map	211
Figure 6.15:	Households Main Source of Potable Water (%)	224
Figure 6.16:	Refuse Disposal	225
Figure 6.17:	Sewage Disposal Methods by Household	225
Figure 7.1:	Grievance Resolution Procedure	253
Figure 9.1:	Institutional Arrangements for the Implementation of ESMP of the	
	Alaoji – Onitsha 330kV Transmission Line Project	321
Figure 9.2:	TCN-AfDB PIU Organogram	322

LIST OF PLATES

Plate 6.1:	Air Quality Sampling Equipment	96
Plate 6.2:	Field Soil Sampling Activity	107
Plate 6.3:	Groundwater Sampling Activity near Ugheli Substation	112
Plate 6.4:	Some Fish Species of the Study Area	144
Plate 6.5:	Overview of the Study Habitats	151
Plate 6.6:	Alien Species of Study Area	153
Plate 6.7:	Invasive Species in the Study Area	153
Plate 6.8:	Pictures of Threatened Species in the Study Area	154
Plate 6.9	Products from Plant Taxa Censored	158
Plate 6.10:	Representative Avian Taxa Censored	167
Plate 6.11:	Mitigatory Species of Study Area	171
Plate 6.12:	Some Key Ecologivc and Social Concerns in the Project area	178
Plate 6.13:	Linked Roads of the TL	205
Plate 6-14:	Land Use	210
Plate 6.15:	Household Main Source of Potable Water	224
Plate: 6.16:	Refuse Disposal	225
Plate 6.17:	Sewage Disposal Methods by Households	225
Plate 7.1:	Pictures Taken During some Stakeholders' Engagement	254
Plate 7.2:	Attendance Register	255

LIST OF ABBBREVIATIONS

- AAC All Aluminum Conductors
- ACSR- Aluminum Conductor Steel Reinforced
- AfDB African Development Bank
- AIDS- Acquired Immune Deficiency Syndrome
- ALARP- As Low As Reasonably Practicable
- AMWH- Abia State Ministry of Works and Housing
- AMWH- Anambra State Ministry of Works and Housing
- AnSEPA- Anambra State Environmental Protection Agency
- AnSMEnv- Anambra state Ministry of Environment
- AnSMEnv- Anambra state Ministry of Environment
- AnSMT- Anambra State Ministry of Transport
- AoO- Area of Occurrence
- ASEPA- Abia State Environmental Protection Agency
- ASMEnv- Abia State Ministry of Environment
- ASMEnv- Abia State Ministry of Environment
- AsMEnv- Anambra State Ministry of Environment
- ASMLS- Abia State Ministry of Land Survey
- ASMLS- Anambra State Ministry of Land Survey
- ASMLST- Anambra state Ministry of Lands, survey and Town planning
- ASMLSUP- Abia State Ministry of Land Survey and Urban planning
- ASMPPUD- Abia state Ministry of Physical Planning and Urban Development (renewal)
- ASMT- Abia State Ministry of Transport
- ASMWA- Abia State Ministry of Women Affairs
- ASWMA- Anambra State Waste Management Agency
- ATR- Animist/ African Traditional Religion
- BCG- Bacille Calmette Guerin
- BMP- Biodiversity Management Program
- BOD- Biochemical Oxygen Demand
- CA Community Agitation

CBOs-	Community Based Organizations
CH ₄ -	Methane
CITES ACT-	Convention to regulate International Trade in Endangered Species Act
CLO-	Community Liaison officer
CMS-	Conservation of Migratory Species
CO-	Carbon monoxide
CO ₂ -	Carbon dioxide
CoC-	Code of Conduct
COD-	Chemical Oxygen Demand
CSO-	Civil Society Organization
dB-	Decibels
DBH-	Diameter at Breast Height
DFIs-	Developmental Financial Institutions
DisCos-	Distribution Companies
DO-	Dissolved Oxygen
DPT-	Diphtheria, Pertussis, and Tetanus Immunization
DSF-	Derived Savanna Forest
DSS-	Department of State Security
EC-	Electrical Conductivity
ECN-	Energy Commission of Nigeria
EEE/UEEE-	Electrical/Electronic Equipment
EHS -	Environmental Health and Safety
EIA-	Environmental Impact Assessment
EMF-	Electromagnetic Fields
EMS-	Electricity Management Services
EMSF-	Environmental and Management System Framework
EMSL-	Electricity Management Services Limited
EN-	Endangered
E00-	Extent of Occurrence
EPC -	Engineering, Procurement and Construction

EPC-	Environmental Protection Consultant
EPSR-	Electric Power Sector Reform
EPSRA-	Electric Power Sector Reform Act
ESAP-	Environmental and Social Assessment Procedures
ESIA-	Environmental and Social Impact Assessment
ESME-	Environmental and Social Management System
ESMP-	Environmental and Social Management Plan
F-	Feeding
FEPA-	Federal Environmental Protection Agency
FGM-	Female Genital Mutilation
FGN-	Federal Government of Nigeria FAO- Food and Agriculture Organization
FL-	Flight
FLMS-	Federal Ministry of Land Survey
FMEnv-	Federal Ministry of Environment
FMPWH-	Federal Ministry of Power Works and Housing
FRSC-	Federal Road Safety Commission
GBV-	Gender Based Violence
GEMIS-	Global Emission Model of Integrated Systems
GenCos-	Generating Companies
GHG-	Greenhouse Gases
GIS	Geographic Information System
GNL-	Geomatics Nigeria Limited
GPS-	Global Position System
GSI-	Gonado Somatic Index
GW-	Groundwater
GZTACSR-	Gap-type ZT-aluminum conductor steel reinforced
HC-	Hydrocarbon
HDT-	Heavy Duty trucks
HIV-	Human Immunodeficiency Virus
HS-	Health and Safety

HSE-	Health, Safety and Environment
HSEQ-	Health, Safety and Environment Quality HCN- Hydrogen Cyanide
HSS-	Health, Safety and Security
HUB-	Hydrocarbon utilizing Bacteria
HUF-	Hydrocarbon Utilizing Fungi
ICNIRP-	International Commission on Non-Ionizing Radiation Protection
IEE-	Initial Environmental Evaluation
IFC-	International Finance Corporation
ILO-	International Labour Organizations
IMWH-	Imo State of Works and Housing
IPP-	Independent Power Producers
ISBST-	Imo State Bureau of Sanitation and Transport
ISEPA-	Imo State Environmental Protection Agency
ISMEnv-	Imo State Ministry of Environment
ISMHWASD-	Imo State Ministry of Health, Women Affairs and Social Development
ISMLS-	Imo State Ministry of Land Survey
ISMLSHUP-	Imo State Ministry of Land Survey, Housing and Urban Planning
ISMPEnv-	Imo State Ministry of Petroleum and Environment
ISMW-	Imo State Ministry of Works
ISO-	International Organization for Standardization
ISS-	Integrated Safeguards Standards
IUCN-	International Union for the Conservation of Nature
LC-	Least Concern
LCD-	Liquid Crystal Detector
LFN-	Legal Framework of Nigeria
LGA-	Local Government Authority
LGAs-	Local Government Areas
LI-	Land Use Impact
LO-	Liaison Officers
LWR-	Length – Weight Relationship

MC-	Male Circumcision
MCNL-	Mifor Consult Nigeria Limited
MTCO ₂ -	Metric Tonnes of carbon dioxide
NA-	Not Available
NBET-	Nigerian Bulk Electricity Trading Plc
NBS-	National Bureau of Statistics
NCP-	National Council on Privatization
ND-	Not Detected
NEEDS-	National Economic Empowerment and Development Strategies
NELMCO-	Nigerian Electricity Liability Management Company
NEMSA-	Nigerian Electricity Management Services Agency
NEPA-	National Electric Power Authority
NEPP-	National Electric Power Policy
NERC-	Nigerian Electricity Regulatory Commission
NES-	Nigeria Environmental Society
NESI-	Nigerian Electricity Supply Industry
NESIS-	Nigerian Electricity Supply and Installation Standards
NESREA-	National Environmental Standards and Regulations Enforcement Agency
NGOs-	Non-Governmental Organizations
NIDs-	National Immunization days
NOX-	Oxides of Nitrogen
NPC-	National Population Commission
NSCDC-	Nigerian Security and Civil Defense Corps
NTEP-	Nigeria Telecommunication Expansion Program
OHL-	Over Head Lines
OPGW-	Optic Protective Ground Wires
OPV-	Oral Polio Vaccine
OS-	Operational Safeguards
OVC-	Orphans and Vulnerable Children
Pa-	Pascal

Geomatics	Nigeria Limited

PACs-	Project Affected Communities
PAPs-	Project Affected Persons
PCB-	Poly Chlorinated Biphenyl
PHC-	Primary Health Centres
PHCN-	Power Holding Company of Nigeria
PIU-	Project Implementation Unit
PM-	Particulate Matter
PPAs-	Power Purchase Agreements
PPEs-	Personal Protective Equipments
QHSE-	Quality Health, Safety and Environment
R-	Resting
RAP-	Resettlement Action Plan
REA-	Rural Electrification Agency
RoW-	Right of Way
SCEG-	Security in Complex Environments Group
SCs-	Successor Companies
SEA-	Sexual Exploitation and Abuse
SEP-	Stakeholder Engagement Plan
SF-	Secondary Forest
SHE-	Safety, Health, Environment
SHE&S-	Safety, Health, Environment, Security
SO ₂	Sulfur dioxide
SOX-	Oxides of Sulfur
SPV-	Special Purpose Vehicle
SQ-	Soil Quality
SSF-	Seasonal Swamp Forests
STDs-	Sexually Transmitted Diseases
SPL-	Sound Pressure Level
STIs-	Sexually TransmissibleInfections
SW-	Surface Water

TBD-	To Be Determined
TCN-	Transmission Company of Nigeria
TDS-	Total Dissolved Solid
TEP-	Telecommunication Expansion Program
THB-	Total Heterotrophic Bacteria
THC-	Total Heterotrophic Count
THC-	Total Hydrocarbon Content
THF-	Total Heterotrophic Fungi
TL-	Transmission Line
TMP-	Traffic Management Plan
ToR-	Terms of Reference
TPM-	Total Particulate Matter
UNFCCC-	United Nations Framework Convention on Climate Change
UNFPA-	United Nations Population Fund
UNICEF-	United Nations Children's Fund
VI-	Visual Impact
VOC-	Volatile Organic Compounds
VU-	Vulnerable
WC-	Water Closet
WHI-	Western Highlands
WHO-	World Health Organization
WMP-	Waste Management Plan
WP-	Western Plains
WQ-	Water Quality
WRM-	Water Resource Management

EXECUTIVE SUMMARY

ES 1 Overview of the Project

The project involves the decommission of the existing Single Circuit 330kv Alaoji - Onitsha line and the reconstruction and upgrade of the transmission line to double circuit Quad Conductor of 330kV type with a total length of about 138 km. The transmission line starts from Alaoji substation in Abia state, linking the Ihiala substation and terminating at the Onitsha substation both in Anambra state. The goal of the proposed Abia and Anambra States Transmission Project is to strengthen the national grid around the country for a more reliable electricity supply. The project shall involve;

- ✓ Validation of existing Right of Way of the existing 330kV SC TL
- ✓ Decommissioning of the existing Transmission line
- ✓ Reconstruction of same 330kV double circuit Quad Conductor line
- ✓ Commissioning of the line
- ✓ Operation of the line
- ✓ Final decommissioning

ES 1.1 Project Alternatives

The options and alternatives considered for the proposed project are presented in the Table ES-1.

Design Consideration	Alternatives Considered	Preferred Alternative
Substation Type	Air Insulated Systems	Air Insulated System (AIS)
	Gas Insulated System	_
Transmission line design	Overhead	Overhead
	Underground	
Foundation Type	Concrete spread footing	Concrete spread footing
	Raft Foundation	7
	Pile Foundation	7
Conductor type	Gap-type ZT-aluminum conductor steel	
	reinforced (GZTACSR)	Gap-type ZT-aluminum conductor
		steel reinforced (GZTACSR)
	Aluminum Conductor Steel Reinforced (ACSR)	
	All Aluminum Conductor (AAC)	

Table ES-1: Options and Alternatives Considered for Proposed Pr

Number of conductors	Single circuit conductors	Double circuit conductors
	Multi-Circuit conductors	
	Double circuit conductors	
Tower type	Lattice	Lattice, Tubular
	Tubular	
Route Alternatives	Route 1	Route 3
	Route 2	
	Route 3	

ES 1.2 Description of the Project Site and Valued Environmental and Social Components

The project area cuts across three (3) States (Abia, Anambra and Imo) and sixteen LGAs as shown in Figure ES-1. These are Ekwusigo, Idemili South, Ogbaru and Ihiala in Anambra state, Osisioma, Aba North, Aba South and Ugwunagbo in Abia state, Owerri municipal, Mbatoli, Ngor-Okpala, Owerri North, Oru East, Oru west, Owerri west and Ngor Okpala in Imo state. The Project's direct impacts outside of the footprint area include the biophysical and socioeconomic impacts. It is expected that all direct biophysical impacts resulting from initial decommissioning, reconstruction and operation of the transmission line will be limited within a corridor centred in the TL alignment, with maximum width of 1 km (500 metres on either side of the Transmission line RoW and is 1.5km² base radius for each sub stations. The socioeconomic ADI is illustrated using a 2km wide corridor centred on the line's route and epicentre of the substation. The project area is drained by the Njaba River and Imo River. The project region is characterized by tropical rain forest. The project area is characterized by Secondary Forest, Derived Savanna and Seasonal Swamp forests. The only protected area around the project zone is the Anambra game reserve which is more than 65km away from the project area. the project area lies in and beyond the swamp zone with an elevation of 51m to 62 m. The project area is predominantly underlayed by sedimentary rocks. Abia state has two principal geological formations namely Bende-Ameki and the Coastal Plain Sands otherwise known as Benin Formation, Anambra State lies in the Anambra Basinp and has about 6,000 m of sedimentary rocks.

Figure ES-1: Map of the project area

ES 1.2.1 Land Cover

The Transmission Line Right of Way for the project is approximately 138km in length and 50m wide, thereby giving a total area of about 1,083,990m².

ES 1.2.2 Baseline condition of Bio-Physical and Socio-economic Environment

Table ES-2 is a summary of the baseline result of the biophysical environment.

Table ES-2: Summary of Baseline Result of the Biophysical Environment of the Project Area

PARAMETERS	SUMMARY
Study area	The study area is located in Abia, Anambra and Imo states, all in South-Eastern Nigeria.
	The project is anticipated to begin from Alaoji and traverse through Imo with a turn in and
	turn out at Ihiala330kV Substation to Onitsha 330kV DC sub station.
Climate/meteorology	The annual rainfall average usually varies from 1,383mm to 2,219mm (60 to 80 inches).
	The relative humidity is usually high throughout the year (about 75%), reaching a
	maximum during the rainy season when values above 87% are recorded. The temperature
	in the region is generally high all year round and usually range between 27.1 – 24.2°C
	between June and December and can rise to 28.4 – 25.7°C between January and April.
	The monthly mean wind speed varies from 1.6 to 2.0 metres per second (m/s). Wind
	speed is strongest at the middle of the rainy season during August and September.
Topography	The elevations of the route ranged from 51.014m to 62.472 m.
	On the average the topography revealeda slightly sloppy area with visible signs of erosion
Ambient Air quality	All parameters were within the FMEnv/WHO regulatory limits except for SO ₂ .
	Concentrations of all criteria pollutants measured were generally above WHO and FMEnv
	detection limit in all sampling stations for both SO ₂ . Possible sources of SO ₂ are
	combustion from vehicular activities,
Noise quality	The results indicated an elevated noise level above the daytime threshold stipulated for
	the various environments (school, hospital, residential and farmlands) for all the sections.
	However, these results were within the general noise level of short exposure of 105dB (A)
	or that of prolonged exposure of 90dB (A) and compared favorably well with the obtained
	secondary data.
Geology	The area is predominantly underplayed by sedimentary rocks with the following
	stratigraphic units underlying most part of the region: the Benin Formation, The late
	Tertiary-Early Quaternary Benin Formation, the Anambra Basin, the Bende-Ameki
	Formation, Imo Shale Formation, Nsukka Formation ,Ajali Formation, the Nkporo
	Shaleand the Mamu Formation.
Pedology	Three soil types characterized the project area
	-Ferruginous tropical soils: Soil texture ranged between loamy sand to sandy clay loam
	soils which is prone to run offs and erosion. Alluvial/ Hydromorphic: Waterlogged areas
	along the route are characterized by hydromorphic soilsAlluvial soil zone found in most
	part of Imo and Abia sections of the route are characterized by erosion. Areas with alluvial
	deposits are known for its leaching effects.
Soil quality	All physicochemical parameters measured in the soil samples were within WHO/FMEnv
	threshold values. Cladosporium sp, Mucor sp, Trichoderma, Fusarium, Rhizopus, Candida
	sp, Aspergillus, Penicillium are the THF taxa while Chromobacterium, Flavobacterium,
	Actinomyces, Arthrobacter, Enterobacter, Staphylococcus, Serriatia, Protues, Klebsiella,
	Escherichia, Micrococcus, Pseudomonas and Bacillus are the THB. Possible organic

	waste substrates for this organism could include nitrogenous, peptide rich and sugar rich
	food sources.
Groundwater	Physicochemical parameters analyzed for the three groundwater samples revealed
	concentrations within WHO/FMEnvlimits. The result compared well with reviewed
	secondary data.
Hydrology/drainage	The Principal rivers in the project area are the Njaba River and Imo river. The Njaba River
	is a tributary of the Imo River.
Surface water	Surface water was collected in ten points. All physicochemical parameters analyzed in the
	water samples were within FMEnv/WHO threshold values, except for Turbidity, PCB and
	DO. These are indicative of run off from polluted terrestrial environmentinto the adjoining
	water bodies. The microbial study revealed the presence of faecal indicator species
	indicating of open defecation system. See section 6.2.10.10.
Sediment	Allphysico chemical parameters analyzed in the sediment samples were within ISQG and
	FMEnv threshold values. The microbial composition of sediments is similar to those
	observed in the surface water samples. See section 6.10.8.
Hydrobiology	A total of eighty-nine (89) species were observed with 32 phytoplankton, 37 zooplankton
	and 20 macro benthowith the presence of pollutant sensitive species in the area such as
	<i>Nereis sp</i> of the Polycheate group as well as some diatoms.
Fisheries	Overall, 19 fishspecies were censored in the water bodies consisting of mainly freshwater
	species.
	Clarias was censored as the dominant genus with 3 species.
	The age structure of the fishermen was mostly in the range of 25 to 60 years old. The
	commonest fish processing and preservation method is smoke-drying(Smoking)
Vegetation	The study area consists of three habitats; Secondary forest about 46%, Derived Savanna
	(DSF) about 26% and Seasonal Swamp forests (SSF) takes 26%.
	A total of ninety-one (91) species were censored for the entire study, Notree
	speciescensored had a DBH of 6inches or above and height of 20m, hence no vegetal
	waste is expected during pre-construction activities.
	The Shannon index of 2.98 is indicative of a disturbed habitat. Fivespecies of conservation
	concern were recorded. These are Sericanthetoupetou (Endangered) and Afzeliaafricana,
	Dalbergialatofolia, Ricinidendronheudelotii and Lophiraalata in the Vulnerable category.
	Fifteen (15) species representing about 36% have indigenous uses. Gmelina aborea,
	Elaeisguinnensis, Lophiraalata, Pentaclethra macrophyllaandBambusa vulgarisare the
	most used plant species in the study area. A review of the alien species showed that two
	(2) of these species (Ageratum conyzoides, and Chromolaen aodorata occur in the study
	area. On the other hand, three (3) species (Chromolaena odorata, Dalbergia sisso and
	Mimosa pudica) were invasive.

Fauna and wildlife Herpetofauna	
-Six Amphibians and six reptilian species were censored in the study area.	
-Secondary forest recorded the highest number of species and species abunc	dance.
There was no species of conservation interest in the study area. However,	the censored
reptilian taxa are under localized threat from biological resource use an	nd Agricultural
activities	
Avian study	
-A total of twenty-five (25) sighted avian species were consored in the area	Some of the
species include Delerinis Blede Hylia Malimbus and Sylvietta	
- The Secondary forest accounted for the highest hird diversity	
- The Secondary lotest accounted for the highest bird diversity.	a stationa. The
-A total of 79 individuals were censored across the counting and observation	touirono and
Indings revealed that <i>Nicator chions, Phyliastrephusicterinus, sylviet</i>	llavirens and
Baeopogon indicator accounted for about 40% the total counts.	.
- I hree behavioural tendencies were evaluated at the time of censoring, feedin	ng, resting and
flight/flying.	
- Halyconbadia, Oriolusnigripennis and Dyaphorophylacastaneawas obse	erved always
resting. <i>Tricholaema hirsute</i> on the other hand was always on flight.	
-The birds were observed flying in three main directions.	
-Flight altitude was also evaluated and the findings. All individuals of <i>Trichol</i>	laema hirsute,
Dyaphorophylanigriipennis, Muscicapacomitatawere observed flying in the 5	50-75 m range
only, Hyliaprasina and Malimbusrubricolis had 2 individuals flying in the 75m a	altitude.
- Other species observed in the 50-75 and above the 75m active were in flight	nt.
-Polyboroides typhus was the only migratory species in the area. A total of 5 ra	raptor species,
belonging to Alcedinida, Ploceidae, and Muscicapidae families were sighted.	
-None of the species censored in the study area were of conservation interest	t as all species
were categorized as Least Concern (LC).	-
Mammals	
-A total of 12 Mammalian species were censured in the study area.	
-These include the 7 species that were sighted, and the 5 species censured v	via indirect
evidences.	
-The Secondary forest was the preferred habitat for mammals in the study are	ea.
-All sighted species were of Least Concern (LC) status using the IUCN Red li	ist 2019
version one criterion.	
-The major threat for all the species is hunting. No endemic mammalian speci	cies was
recorded.	
Protected areas The only protected area is the National Park around the project zone is Anam	nbra game
reserve which is more than 65km away from the project area.	J -

Geomatics Nigeria

Table ES-3 is a Summary of Baseline Result of the Socio-economic Environment of the Project Area.

Table ES-3: Summary of Baseline Result of the Socio-economic Environment of the Project Ar
--

Parameters	Summary
Political context	Anambra State is made of 21 local governments, including, Alaoji, Idemli North and
	South Ogbaru and Ihiala.
	Each of the LGAs is run by an elected Executive Chairman and elected Counselors.
	The Chairman appoints cabinet to assist in performing the executive functions of the
	local government.
	Abia State has 17 local governments including Osisioma, Aba North and South
	Ugwunagbobo and Ukwa West.
	Imo State has 17 LGAs including Owerri West, Oru East, Oru West and Ngorokpala
Demography	Based on the Projected population (2018 based on an exponential growth rate of
	3.2%).
	Abia State has a demography of 39,380,05.9 and 4,900km ² of land area. The State
	has a population density of 580.698 persons/ km ² , Anambra State has a demography
	of 57,821,13.9 and a land area of 4,865km ^{2.} the state has a population density of
	858.752 persons/ km ² and Imo state has a demography of 40,748,46.6 and a land area
	of 5,288km ² . The State has a population density of 742.731 persons/ km ² . In all three
	States, male population is marginally above that of females. Age group of 0-14 years
	constituted 41.8% of the population of all three States. Literacy level stood at 85.1,
	82.1 and 74.3, respectively.
Conflict Resolution	Civil cases in the communities are arbitrated by the Chiefs-in-Council, Elders-in-
	Council, religious leaders, traditional priests, age grade, women groups or family heads.
	On the other hand, inter-communal conflicts are resolved by the representatives
	(Chiefs) of the communities involved. If it cannot be resolved at that level, the case is
	taken to the Paramount ruler for adjudication. Criminal cases are referred to the
	government law enforcement agents.
Household and	A total of 600 household questionnaires were administered and 560 retrieved
Community	representing a success rate of 93.3 % while 110 community questionnaires were
Characteristics	recovered out of 118 initially administered representing a success rate of 93.2%.
Gender of heads of	In Anambra, the 83% male house heads is less than the Nigerian average of 85.7%,
household	though all areas in the line route have more male house heads.
	In Abia, the 88.2% male househead is less than the Nigerian average of 85.7%.
	In Imo, 55.7% male househead is less than the Nigerian average of 85.7%.
Marital Status of	The marital status of respondents in the project area of Anambra, Abia and Imo
Head of Household	are52% (18% single and 21% widowed), 50% (30% single and 14 widowed) and 47%
	(17% single and 24% widowed).

Nature of Marriage	The 89% of monogamous marriages across all the communities in the project area is
in Households	above the Nigerian and South-East averages of 76.1 and 70.7% respectively.
HOUSEHOLD SIZE	The most prevalent household sizes in the project areas are those made up of 3-5
	persons and 6-10 persons accounting for about 87% of the households.
	The findings are in tandem with 2012 NBS statistics which put the average family size
	in Anambra State at 3.9 persons as against Abia State with 3.7 persons and Imo state
	with 3.7.
Ethnic Composition	Expectedly, the data revealed dominance of the landowners (lbo) where the proposed
	project is to be sited.
	The results also revealed high relationship between project area and the contiguous
	ethnic group.
	This was evident in the presence of Anioma/ibo, Iteskiri, Ijaw, Afemai, Ishan and
	lsoko.
	The presence of Yoruba and the Hausa/Fulani ethnic groups reflects the cosmopolitan
	nature of the dominant cities within the project area (Aba, Owerri, Alaoji, Ihiala and
	Onitsha).
Religion	The people are adherents of three religions.
	Christianity was the most practiced religion with about 97.6% of the respondents
	across the LGA's.
	Followed by ATR with an average of 2.8%. While about 0.06% were adherents of the
	Islamic Faith
Educational	Over 219 primary schools, 106 secondary schools and 4 tertiary institutions in
Facilities	communities within the spatial boundary of the project area.
Water facilities	The number of privately-owned boreholes is higher compared to communally owned
	ones.
	Less than 1% of the respondents depend on communal borehole boreholes for their
	water needs.
Household facilities	Result on the survey of these facilities revealed that power generator, gas
	stove/kerosene, television, radio cassette player and refrigerator were the most
	common facilities among households in the project area.
	Cars and Motorcycle are the common means of transportation while the combined
	percentage of persons that own houses and/or land is less than 6% of the sampled
	population.
Roofing materials	Over 60% of houses in the project area are roofed with corrugated Iron Sheets except
	in communities in Imo state which a bulk of the buildings (33.8%) had also roofed with
	aluminum sheet.
Walling Materials	On the average, the use of concrete blocks as walling materials is predominant.
Flooring Material	Five flooring materials were observed to be in use.

	Smooth cement and ceramic tiles accounted for well about 80.1%, sand, wooden
	planks and smothered muds observed in Aba, Ihiala, Owerri, Ekwusigo accounted for
	the remainder 19.9%.
	The data provided closely mirrors The Nigeria average for Flooring Materials.
Transport Facilities	The project area is traversed by several roads, amongst which are:
	The Aba – Portharcourt express way
	Owerri – Onitsha express Way Umuikaa – Owerri road
	Smaller feeder roads linking the major roads with the impacted communities, and
	Unpaved roads connecting small villages and settlements.
Communication	The people in all the communities have access to mobile communication through fixed
Facilities	wireless lines provided by communication service providers like MTN, GLO, AIRTEL
	and 9 Mobile.
	There are postal services in most of the communities in Abia, also there are no postal
	service in the communities in Anambra and Imo, but the inhabitants obtain news about
	other parts of Nigeria and the world through radio, television and the mobile handsets.
Health Facilities	The health facilities in the area comprise of twent- four (24) Primary Health Centres
	(PHC) and twenty-nine (29) hospitals.
Prevalence of	The most prevalent diseases affecting all age groups in the communities are Malaria
Diseases in the	Fever (39.2%), Upper Respiratory Tract Infection (19.2%), Typhoid Fever (10.5%),
study area	Diarrhoea/vomiting (5.2%) and Hypertension (7.2%).
	Other common ailments in across all project LGAs: include Worm Infestation, Diabetes
	Mellitus, Lower Respiratory Tract Infection, and Arthritis.
Sexual Activities	A greater percentage of the respondents are aware of the causal methods and
and Knowledge of	preventive measures of STIs
Sexually	
Transmissible	
Infections (STI)	
Condom	Less than 30% of males and 35% of females aged above 15 years had never used
Availability and	condom before while over 20% of males and 30% females claimed they used condom
Use	only occasionally, mainly either for prevention of pregnancy or STI. Only less than
	10% of sexually active males and 2% females use condom all the time (i.e. during
	every episode of sexual intercourse).
Land planning and	Land ownership in the project site is either by community or family. However, by virtue
uses	of the Public Lands Acquisition Law, the state government may acquire land
	compulsorily for public purpose from individual landowners, subject to the payment of
	compensation to such landowners.
	The wayleave is served by the existing road infrastructure and other rural roadways
	from which access along the way-leave is provided.

	The residential areas are mostly rural settlements except Ohabiam, Owerri, Ala-Oji,
	Ariaria, Aba and Umuochamthat are urban settlements.
	The population in the PACs is predominately made up of low and middle with few
	high-income earners in the mentioned urban towns. The residential areas and the
	surrounding sub-places consist largely of single unit residential homes.
	On the other hand, the rural settlements such as Umuode, Obosi, Aba, Ihiala,
	Ozubulu, Ngor andall other communities except the listed semiurban/urban are
	sparsely populated with low cost, single unit dwellings on small stands. Majority of
	theinhabitants of these areas live on lower income (see discussion on livelihood).
Occupation	The respondents are mainly into Farming (24%), Pastoralist (8%), Self-employed
	(20.3%) Private employee (10.7%), Public employee (27%) and Trading (32.3%).
Artisanal Skills	Taxi (car, tricycle, motocycle), Heavy machinery operator (shovel operator, caterpillar,
	etc.), Mechanic, Mason, Painter, Chainsaw operator, Commercial Farm workers,
	Plumbing, Experienced pylon assembler, Carpenter, Welder, Electrician, Truck driver
Income	The average income of households of the respondents were below \$1500,000 per
	annum.
	It was observed that the basic challenges to income generating activities in the project
	area include:
	High cost of transportation, High level of post-harvest loss, Absence of electricity,
	Lack of access to credit facilities, Lack of productive inputs and inadequate extension
	visitation, Poor storage and processing facilities and High cost of labour among
	others.
Households' Main	Electricity from the national grid is the main source of lighting in the project area
Source of Energy	supplanted by privately owned AC supply sources.
	On the other hand, kerosene was the most used energy source for cooking. In
	addition, charcoal and electricity were the least patronized energy sources in the
	project area.
Households' Main	The prominent water source in the project area is water from boreholes. Other
Source of Potable	frequently used water sources are wells, water vendors and tanker trucks. The least
Water	used water sources were piped water, rainwater, unprotected spring, bottles water,
	surface water and rivers.
Waste Disposal by	Open dumping is the prevalent refuse disposal method in the area followed by refuse
Households	incineration. over 55% of households in the project area use the Water Closet (WC)
	system about 30% used pit latrine while about 15% of the households, use the bush.
Vulnerable Groups	The most vulnerable group across the LGA's are non-indigenes, children and women
	and land tenants.
Cultural Heritage	There are no cultural sites within the way leave and within the 500m on either side of
Resources	the RoW.

Gender Issues	In terms of Circumcision, all male individuals in the households are circumcised with
	no female circumcised. While in terms of Land ownership: There is a higher ratio of
	male landowners than female in project area. This is related to the culture of
	preferentially giving wealth to men over women on inheritance.

ES 1.3 Institutional and legal framework for implementation of the project

NATIONAL ENVIRONMENTAL & SOCIAL POLICIES

The following are the national environmental and social policies related to the proposed project

- ✓ National Policy on the Environment (1988)
- ✓ EIA Act Cap E12 LFN 2004
- ✓ National Environmental Standards and Regulations Enforcement Agency (NESREA) Act 2007
- ✓ National Environmental Protection (Management of Solid and Hazardous Wastes) Regulations, 1991
- ✓ National Environmental (Sanitation and Wastes Control) Regulations, 2009
- National Environmental Protection (Pollution Abatement in Industries and Facilities Generating Wastes) Regulations, 1991
- ✓ National Environmental (Electrical/Electronic Sector) Regulations, 2011
- ✓ National Environmental (Noise Standards and Control) Regulations, 2009
- ✓ National Environmental (Surface & Groundwater Quality Control) Regulations 2011
- ✓ Land Use Act CAP L5 LFN 2004
- ✓ Forest Law CAP LFN 1994
- ✓ Endanger Species (Control of International Trade and Traffic) Act CAP HI LFN 2004
- ✓ National Environmental (Soil Erosion and Flood Control) Regulations, 2011
- ✓ Factories Act (CAP F1), 2004
- ✓ Employee Compensation Act, 2010
- ✓ Nigerian Urban and Regional Planning Act CAP 138 LFN 2004
- ✓ EIA Procedural Guidelines, 1995
- ✓ Natural Resources Act CAP 268 LFN 1990

ENERGY SECTOR POLICIES AND LEGAL PROVISIONS

The following are the national energy sector policies and legal provisions related to the proposed project

✓ National Energy Policy, 2003

- ✓ Electric Power Sector Reform Act 2005
- ✓ Energy Commission of Nigeria Act CAP 109 LFN 1990
- ✓ Nigerian Electricity Supply and Installation Standards (NESIS) Regulations 2015
- ✓ Acquisition of Land Access Rights for Electricity Projects Regulations, 2012
- ✓ Roadmap for Power Sector Reform of 2010.

NIGERIAN GENDER RELATED POLICIES

The following are the Nigerian gender-based policies related to the proposed project

- ✓ The Gender Policy Framework in Nigeria
- ✓ National Gender Policy, 2006

NIGERIAN INSTITUTIONAL PROVISIONS AND ARRANGEMENT

The following are the Nigerian Institutional provisions and arrangement related to this project

- ✓ Federal Ministry of Environment
- ✓ National Environmental Standards and Regulations Enforcement Agency (NESREA)
- ✓ Federal Ministry of Power Works and Housing
- ✓ Nigerian Bulk Electricity Trading Plc (NBET)
- ✓ Nigerian Electricity Regulatory Commission (NERC)
- ✓ Nigerian Electricity Liability Management Company (NELMCO)
- ✓ Nigerian Electricity Management Services Agency (NEMSA)

STATE LAWS

Abia State Environmental Laws

The enabling legal instruments of the state include;

- ✓ Basic Environmental Law No. 1of 2004 amended in 2013
- ✓ Policy on Environment (2010)
- ✓ Flood and Erosion Control and Soil Conservation (2010)
- ✓ Flood Control and Water Conservation (2010)
- ✓ Watershed Management Policy (2010)
- ✓ Basic Environmental Law No. 1 of 2004 amended in 2013

Imo State Environmental Laws

The enabling legal instruments of the state include;

- ✓ Imo State Environmental Protection Agency Law
- ✓ Imo State Bureau for Sanitation & Transport Law

Anambra state Environmental Laws

The enabling legal instruments of the state include

- ✓ Environmental Protection Agency Act
- ✓ Waste Management Agency Act

LGAs Bye Laws on Environment

The project would trigger all the environmental and waste management by laws of all the listed affected LGAs

International Conventions and Agreements applicable to the sector

Apart from the National Laws, Acts and Regulations, Nigeria is a signatory or party to many International Environmental Conventions and Treaties that are relevant to the energy sector. A list of some of the relevant International Environmental Conventions and Treaties ratified by the Government of the Federal Republic of Nigeria are;

- ✓ United Nations Framework Convention on Climate Change (UNFCCC). 1992
- ✓ Basel Convention on the Control of Trans-boundary Movements of Hazardous Wastes and their Disposal, 1989
- ✓ Montreal Protocol on Substance that Deplete the Ozone Layer, 1987
- ✓ Vienna Convention on the Ozone Layer, 1985
- ✓ ILO C155 and R164 2001; Management of work place Health and safety and Management of work place Hazards
- ✓ Convention on Conservation of Migratory Species of Wild Animals, 1979
- Convention on the Protection of the World Cultural and Natural Heritage (world Heritage Convention), Paris, 1975
- ✓ Convention to Regulate international trade in Endangered species of Fauna and Flora (CITES), 1973
- ✓ Convention on the Conservation of Migratory Species of Wild Animals (CMS or Bonn Convention)

(Signatory only), 1988

- ✓ African Convention on the Conservation of Nature and Nature Resource, 1968
- ✓ Paris Agreement, 2015

The African Development Bank (AfDB) Integrated Safeguards System (ISS)

The ISS consists of four interrelated components as summarized in Figure ES-2.

Integrated safeguards policy	Declaration of commitment to environmental and social
statement	sustainability and to reducing risk of non compliance
Operational safeguards	Short and focused policy statements that follow Bank commitments and establish operational parameters
ESAP revised procedures	Procedural and process guidance (documentation,analysis,review,and reporting) at each stage of projet cycle
Guidance notes revised IESIA	Detailed (methodological,sectoral and thematic) guidance on
guidelines	integrated environmental and social impact assessment

Figure ES-2: Structure of the AfDB ISS

TCN's HSEQ POLICY

TCN SHE & S Philosophy is anchored on

- ✓ nobody Gets Hurt during project planning and execution.
- ✓ safety and security are the project's highest priorities.
- ✓ any work performed at a facility must be done in the safest manner possible.
- safety is an integrated part of SHE&S policies, procedures and requirements and those are required to safely operate and maintain operating facilities.
- ✓ safety is everybody's concern and responsibility.

INSTITUTIONAL AND ADMINISTRATIVE FRAMEWORK

Responsibilities for the ESIA and its implementation are shared between multiple stakeholders, including concerned ministries, competent authorities, the project implementation unit (PIU), the TCN and the contractors. These include the following;

- ✓ The Federal Government of Nigeria (FGN)
- ✓ Federal Ministry of Environment
- ✓ Federal Ministry of Finance
- ✓ Transmission Company of Nigeria (TCN)
- ✓ AfDB Project Implementation Unit (PIU)
- ✓ Abia State Ministry of Environment (ASMEnv)
- ✓ Abia state Ministry of Physical Planning and Urban Development(renewal) (ASMPPUD)
- ✓ Abia State Environmental Protection Agency (ASEPA)
- ✓ Abia State Ministry of Land Survey and Urban planning (ASMLSUP)
- ✓ Abia State Ministry of Women Affairs (ASMWA)
- ✓ Abia State Ministry of Transport (ASMT)
- ✓ Anambra state Ministry of Environment (AnSMEnv)
- ✓ Anambra State Environmental Protection Agency (AnSEPA)
- ✓ Anambra State Ministry of Transport (AnSMT)
- ✓ Anambra state Ministry of Lands, survey and Town planning (ASMLST)
- ✓ Imo State Ministry of Petroleum and Environment (ISMPEnv)
- ✓ Imo State Environmental Protection Agency (ISEPA)
- ✓ Imo State Ministry of Health, Women Affairs and Social Development (ISMHWASD)
- ✓ Imo State Ministry of Works (ISMW)
- ✓ Imo State Ministry of Land Survey Housing and Urban Planning (ISMLSHUP)
- ✓ The Customary District Councils head of each affected LGA
 - Ekwusigo
 - Idemili South
 - Ogbaru
 - Ihiala
 - Osisioma

- Aba North
- Aba South
- Ugwunagbo
- Owerri municipal
- Mbatoli
- Ngor-Okpala
- Owerri North
- Orun East
- Oru west
- Owerri west and
- Ngor Okpala
- ✓ Village Chiefs of Affected Communities

ES 1.4 Project Impacts

The following are the key project impacts

- pollution/nuisance levels= SO₂ levels in air, copper levels in soil, iron and lead levels in groundwater, BOD,
 COD and DO levels in surface water and copper and manganese levels in sediment
- Noise =
- Surface water physico-chemical parameters above WHO/FMEnv regulatory = DO, Turbidity
- Invasive species= Chromolaena odorata, Dalbergia sisso and Mimosa pudica
- Alien species = Ageratum conyzoides, and Chromolaena odorata
- Threatened species= Afzelia africana, Dalbergial atifolia, Ricinodendron heudelotti, Lophira alata (Vulnerable) Sericanthe toupetou (Endangered)
- Avian Raptor species= Halcyon badia, Polyboroides typus, Merops gularis, Miscicapa comitata and Muscicapa cassini
- Migratory species = Polybroides typhus
- Estimated amount of greenhouse gas to be generated by project activity = 269.25 MTCO₂ Equivalence
- Net amount of GHG to be reduced by project per year = 5,743,321.94 MTCO₂ Equivalence
- Number of households to be displaced will be about 2,100
- Economic displacement of about N5.1 billion

ES 1.5 Consultations

Details of the first and second rounds of consultations held with various stakeholders of the project are presented in Table ES-4.

Table ES-4: Details of Stakeholder Consultation

	Objectives a	and Information Provided for R	Rounds 1 an	d 2				
Abia State F	Round 1			Imo State		Ar	nambra State Roun	id 1
Target	Date &	Comment &	Target	Date &	Comment & Implementation	Target	Date & Venue	Comment &
group	Venue	Implementation	group	Venue		group		Implementation
FMEnv	Government house, Umuahia 27/7/2019	Promised to cooperate with other environment regulators to fast track the ESIA Process for timely approvals and permitting.	FMEnv	Benconn Hotel, Owerri 25/7/2019	Advised we ensure maintenance of the ecosystem, ecological process and preserve biodiversity.	FMEnv	Beautiful Gate Resort, Awka (24 July 2019)	Advised TCN to develop the SEP and strictly implement it throughout the project lifespan, to ensure stakeholder confidence and sustainability.
FMAFNR	Government house, Umuahia 27/7/2019	Promised to be involved in the provision of agricultural extension services to PAPs, to achieve greater agricultural productivity.	FMAFN R	Benconn Hotel, Owerri 25/7/2019	Advised we watch out for flood plains and also construction be done above flood level.	FMAFNR	Beautiful Gate Resort, Awka (24 July 2019)	Compensation for PAPs and PACs was stressed while footprint for access route creation should be minimized
FMLS	Government house, Umuahia 27/7/2019	They advised that proper route studies should be carried out and also	FMLS	Benconn Hotel, Owerri 25/7/2019	promised to facilitate and fast track the processes to gazette the ROW when TCN applies and this should be	FMLS	Beautiful Gate Resort, Awka (24 July 2019)	Promised to send officers to join the TCN's consultant in

		affected land owners			done before compensations /			the field for
		should be compensated			Resettlements are			enumeration
					implemented			exercise, if
								invited
FMPW&H	Government	The acquisition of	FMPWH	Benconn	PAPs and PACs should be	FMPWH	Beautiful Gate	The design and
	house,	government owned land		Hotel,	compensated without delay.		Resort, Awka	type of
	Umuahia	but the project will be		Owerri			(24 July 2019)	equipment
	27/7/2019	responsible for the		25/7/2019				should be that
		processing charges.						which meet
								international
								best practice.
NESREA	Government	Commended TCN for an	NESRE	Benconn	Advised compliance with	NESREA	Beautiful Gate	Promised to
	house,	early good start in	А	Hotel,	environmental laws and		Resort, Awka	give full support
	Umuahia	compliance to		Owerri	regulation		(24 July 2019)	in the best of
	27/7/2019	environmentalrequirements		25/7/2019				their ability
		and admonished the						
		Company to keep up						
		thatway						
NERC	Government	Promised to give full	NERC	Benconn	Advised villagers to be	NERC	Beautiful Gate	Emphasized on
	house,	support in the actualization		Hotel,	hospitable and give full		Resort, Awka	the observation
	Umuahia27/	of the project.		Owerri	cooperation in the		(24 July 2019)	of Nigerian
	7/2019			25/7/2019	actualization of the project			Electricity
								Regulatory
								Commission
								standards

NEMSA	Government house, Umuahia 27/7/2019	Requests to be involved in all phases of the project to inspect the standards of the project before commissioning and during operations.	NEMSA	Benconn Hotel, Owerri 25/7/2019	TCN should ensure that materials and equipment to be used are of international standards.	NEMSA	Beautiful Gate Resort, Awka (24 July 2019)	Promised to give technical support in the actualization of the project
DSS	Government house, Umuahia 27/7/2019	promised to provide the necessary security cover needed in all phases of the project	DSS	Benconn Hotel, Owerri 25/7/2019	Gadgets, Equipments and valuables should be carefully safeguarded to avoid theft and vandalism	DSS	Beautiful Gate Resort, Awka (24 July 2019)	Promised to give full support in the actualization of the project.
NSCDC	Government house, Umuahia 27/7/2019	Security guard should be employed.	NSCDC	Benconn Hotel, Owerri 25/7/2019	Promised to provide the necessary security cover needed in all phases of the project and requested that provisions for their logistics be made ab initio in the project budget.	NSCDC	Beautiful Gate Resort, Awka (24 July 2019)	presence of security personnel during any phase of the project activity
ASMEnv	Government house, Umuahia 27/7/2019	They advised we ensure safe health and safety environment	ISMEnv	Benconn Hotel, Owerri 20/3/2019	Waste should be disposed properly to avoid environmental pollution	ASMEnv	Beautiful Gate Resort, Awka (19 May 2019)	Compliance with the state environmental laws and regulation
AMWH	Government house, Umuahia 12/3/2019	Stressed on the gully erosion hazard in the state.	IMWH	Benconn Hotel, Owerri 20/3/2019	Stressed the need for Compensation to PAPs and PACs was stressed	AMWH	Beautiful Gate Resort, Awka (19 May 2019)	Transport Management Plan needs to bedeveloped for

								heavydutyvehicl	
								etoensureappro	
								priatecontrolsdu	
								ring	
								transportation	
ASMLS	Government	affected landowners	ISMLS	Benconn	promised to provide	ASMLS	Beautiful Gate	All the	
	house,	should be compensated		Hotel,	necessary support		Resort, Awka	communities	
	Umuahia			Owerri	needed in all phases of the		(19 May 2019)	sought to know	
	12/3/2019			20/3/2019	project			the size of the	
								RoW	
<i>Ariaria</i> Int	Ariaria	Asked that PAPs be given	Owerri	Owerri	Harped on the need for	Onitsha	Onitsha market	The project	
ernational	market	adequate time prior to	market	market	locals to be involved in the	market	square	should fully	
<i>Market</i> Tr	Square	construction	women	square	contracting process	trade	23-5-2019	understand the	
aders Ass	21-5-2019		associati	22-5-2019		union		livelihood	
ociation			on					pattern within	
								the area.	
Aba	Aba market	TCN should actively	Owerri	Owerri	affected landowners should	Onitsha	Onitsha market	they asked for	
market	square	engaged all stakeholders	market	market	be compensated	market	square	improvement of	
traders'	21-5-2019	throughout the project life	traders'	square		women	23-5-2019	electricity	
associatio		cycle	associati	22-5-2019		associati		supply in their	
n			on			on		village	
Abia State	Government	Promised to give full	Anambr	Benconn	Requested for constant	Anambra	Beautiful Gate	affected	
Women	house,	support in the actualization	a State	Hotel,	electricity in their community	market	Resort, Awka	landowners	
Associatio	Umuahia	of the project	Women	Owerri		women	23-5-2019	should be	
n	21-5-2019		Associat	22-5-2019		associati		compensated	
			ion			on			
		Round	2 Consult	ations. The ta	arget group is Project Affec	ected Communities			
Imo State			Abia Sta	ite		Anambra State			

LGA	Community	Date &	Comment &	LGA	Commun	Date &	Comment &	LGA	Commu	Date &	Comment &
		Venue	Implementation		ity	Venue	Implementati		nity	Venue	Implementati
							on				on
Owerri	Owerri	lgwe's	They were	Ossioma	Umuode	Town	The people of	Idemili	Obosi	Communi	Compensation
Munici		Palace	concerned about	Ngwa		hall	Umuode wants	South		ty primary	for PAPs and
pal		21-5-	the houses			22-5-	TCN improve			school	PACs must be
		2019	around the right of			2019	electricity in			24-7-	paid before
			way and relocation				their			2019	project
			measures put in				community				commenceme
			place by the								nt
			government.								
	Nwaorie	Town hall	The community		Umuocha		They		Umuoja	Town hall	TCN must
		21-5-	requested for		m		welcomed the			22-7-	acquire the
		2019	community				project and			2019	ROW now
			development				asked for				before
			projects and				improvement				embarking on
			employment				of electricity				the proposed
			opportunities for				supply in their				reconstruction
			the youth				village				project
	Owerri	lgwe's	TCN must pay		Abayi		They showed		Obosi	Town hall	The
	Division	Palace	adequate				concern on			22-7-	community
		21-5-	compensation for				corona and			2019	requested for
		2019	the affected				effect on				community
			houses/structures				human health				development
			and crops within								projects and
			the ROW.								employment
			\checkmark								opportunities
											for the youth

Mbatoli	Awo	lgwe's	They want TCN to	Umuozuo	lgwe's	They		Oba	lgwe's	The Igwe
		Palace	prioritize rural		Palace	complained		Aboji	Palace	pledged to
		21-5-	electrification and		22-5-	about Dust		-	24-7-	fully support
		2019	stabilize power		2019	and noise			2019	the
			supply in their			control during				implementatio
			community			construction				n of the project
	Orodo	Communi	They were	OsiaUmu	Comm	TCN must pay		Oba	lgwe's	They
		ty primary	concerned about	Mgbede	unity	adequate			Palace	welcomed the
		school	the houses and	Ū	primary	compensation			20-7-	project and
		20-5-	farmlands		school	for the affected			2019	asked for
		2019	around the right of		22-5-	houses/structu				improvement
			way and relocation		2019	res and crops				of electricity
			Measures put in			within the				supply in their
			place by the			ROW.				village
			government.			\checkmark				J
			0							
	Ohoba	Town hall	They do not want		Town	They want the	Ogbaru	River	Town hall	The people of
		20-5-	TCN to build their	AmaOkp	hall	compensation/	•	idemili	24-5-	lasi showed
		2019	houses for them	u .	22-5-	resettlement to			2019	major
			but to compensate		2019	be				concerned
			them in cash.			implemented				on
			\checkmark			within months				compensation
						of				to landowners
						enumeration,				affected
						to avoid				by the project
						unnecessary				
						hardship on				
						the PAPs				

	Nkwesi	lgwe's	They expressed	UmuOjim	Comm	They	ErunaLa	Communi	They
		Palace	their fear	а	unity	requested for	gbe	ty primary	requested
		20-5-	remaining in		primary	employment		school	compensation
		2019	'darkness', despite		school	for the youth		24-5-	should be paid
			co-hosting a power		22-7-	during the		2019	before project
			project of this		2019	cause of the			commenceme
			scale			project			nt to avoid by
			✓						PAPs
	Mining	Taurahall	Companyation for	Oshu	lauva'a	The laws	Atoni	laura ia	The laws
	IVIDIELI			Ogbu	Igwe s	I ne igwe	Atani	Igwe s	I ne igwe
		21-5-	PAPs and PACs			promised his			weicomed the
		2019	must be paid		23-7-			20-7-	development
			before project		2019	auring the		2019	and pleaged
			commencement			cause of the			tuli support
_	Ohalus	leuve'e	They ested if T	Linuaha	<u></u>	project		Communi	They want
	Obaku	Igwe s	They asked if TL	odoumu	Comm	They were	Eze		They want
			won't cause		unity	concerned		ty primary	I CIN LO
		21-0-			primary	about the			prioritize rurai
		2019	their communi ty			formlanda		20-7-	
					2010	around the		2019	
					2019	right of wow			power suppry
						and releastion			
									community
						in place by the			
						government.			

Ngor- Okpala	Akabo	Communi ty primary school 21-5- 2019	TCN must acquire the ROW now before embarking on the proposed reconstruction project	Umumba	Comm unity primary school 24-7- 2019	They want TCN to prioritize rural electrification and stabilize power supply in their community	Ihiala	Awgbu	Igwe's Palace 24-7- 2019	They want the compensation/ resettlement to be implemented within months of enumeration, to avoid unnecessary hardship on the PAPs
	Umunoha	Communi ty primary school 21-5- 2019	They requested compensation should be paid before project commencement to avoid by PAPs	UmuAkp ara	Comm unity primary school 20-7- 2019	They shoed their grievance for No compensation payment after the construction of the existing 330kV SC line.		Azira	Igwe's Palace 24-5- 2019	The community demanded for community development projects
Owerri North	Umunahu	Igwe's Palace 26-7- 2019	They want TCN to prioritize rural electrification and stabilize power supply in their community	Umuaba	Town hall 24-7- 2019	They were scared of corona effect and asked which measures was put in place to		Uli	Communi ty primary school 24-5- 2019	They want the compensation/ resettlement to be implemented within months of

						reduce the effect				enumeration, to avoid unnecessary hardship on the PAPs
	Mkpama	Town hall 26-7- 2019	TCN must acquire the ROW now before embarking on the proposed reconstruction project	Okpuala	Igwe's Palace 23-7- 2019	They asked for the project Benefits and also employment opportunities for the youths		Ihiala	Communi ty primary school 24-5- 2019	The Igwe pledged to fully support the implementatio n of the project
Oru East	Awomama	Town hall 25-7- 2019	The Igwe pledged to fully support the implementation of the project	Mbuntu	Igwe's Palace 21-7- 2019	The villages made enquiry on how long the project will take and its benefits to the community		Ozubulu	lgwe's Palace 23-7- 2019	The Igwe welcomed the development and pledged full support
Oru West	Ofekata	Communi ty primary school 25-7- 2019	They showed their grievance for No compensation payment after the construction of the existing 330kV SC line	MbokoU muete	Comm unity primary school 23-7- 2019	They requested compensation should be paid before project commenceme nt to avoid by PAPs	Ekwusig o	Orifite	Igwe's Palace 24-7- 2019	They were concerned about the houses and farmlands around the right of way and relocation

								measures put in place by the government.
Owelu,	Igwe's Palace 20-5- 2019	They want TCN to prioritize rural electrification and stabilize power supply in their community	lhie	Town hall 21-7- 2019	They welcomed the project and asked for improvement of electricity supply in their village	Ihembos i	Igwe's Palace 23-7- 2019	They showedtheir grievance for No compensation payment after the construction of the existing 330kV SC line.
Orji,	Town hall 20-5- 2019		AmaApu	Comm unity primary school 23-7- 2019	The Igwe promised his full support during the cause of the project	Ozubulu	Town hall 23-7- 2019	They want TCN to prioritize rural electrification and stabilize power supply in their community
Oratta	Town hall 20-5- 2019		lfe	Town hall 23-7- 2019	They showed concern on corona and effect on human health	Oraifite	Town hall 23-7- 2019	They showedtheir grievance for No compensation payment after the

										construction of
										the existing
										330kV SC line.
Owerri	Oroawe	lawe's	They showedtheir		UmuMba	lawe's	They	Ubuluisi	Town hall	TCN must
west	elegne	Palace	grievance for No		omamod	Palace	welcomed the	1170	20-7-	acquire the
		20-5-	compensation			21_7_	project and	020	2010	ROW now
		20.0	navment after the			2010	asked for		2013	hefore
		2013	construction of the			2013	improvoment			ombarking on
							of electricity			the proposed
			Existing SOURV SC							
			iine.							reconstruction
				-		-	village			project
	Ubomiri	Igwe's	They do not want		Ariaria	Iown	They want			
		Palace	ICN to build their			hall	ICN to			
		20-5-	houses for them			24-7-	prioritize rural			
		2019	but to compensate			2019	electrification			
			them in cash.				and stabilize			
			\checkmark				power supply			
							in their			
							community			
	Irete	Communi	The community	Aba	Asia	Town	The Igwe			
		ty primary	expressed concern	South	UmuNka	hall	pledged to			
		school	over their farmland			23-7-	fully support			
		24-7-	were the project			2019	the			
		2019	cuts across and				implementatio			
			requested for				n of the project			
			compensation				J			
	Awoldemiri	lgwe's	The Igwe pledged		Asia	lgwe's	They			
		Palace	to fully support the		Amanhie	Palace	requested for			

		24-7-	implementation of			20-7-	employment		
		2019	this project			2019	for the youth		
							during the		
							cause of the		
							project		
Ngor-	Amaibo	lawe's	The lawe	Uawunaa	Ala Oii	Town	They showed	 	
Okpala		Palace	welcomed the	bo	,	hall	concern on		
		26-7-	development and			24-7-	corona and		
		2019	pledged full			2019	effect on		
		2010	support			2010	human health		
	ΔΙμμ	lawe's	TCN must nav		Umulkul	Comm			
		Palace	adequate		ko	unity	nledged to		
		26-7-	compensation for			nrimary	fully support		
		20-7-	the affected			school	the		
		2019	housos/structuros			27 /	implomentatio		
			nouses/structures			21-4-	n of the project		
						2019	n or the project		
			the ROW.						
			✓						
	0.111	<u> </u>							
	Ocnicna	Communi	I ne Igwe						
		ty primary	welcomed the						
		school	project and pledge						
		26-7-	full support						
		2019							
	Elelem	lgwe's	They were						
		Palace	concerned about						
		26-7-	the houses and						
		2019	farmlands						

	around the right of				
	way and relocation				
	measures put in				
	place by the				
	government.				

ES 1.5 Environmental and social management plan (ESMP)

The specific measures addressing each significant/moderate impact are

AIR QUALITY

- ✓ Maintain and operate all vehicles and equipment engines in accordance with manufacturers recommendations
- ✓ Regular cleaning of equipment
- ✓ Cover properly loose materials and keep top layers moist
- ✓ Speed limits on-site of 15kph on unhardened roads and surfaces
- Maintain and operate all vehicles and equipment engines in accordance with manufacturers specifications, location of stationary generators to facilitate dispersion, restriction of vegetation clearing to only the required area

SURFACE WATER, GROUNDWATER AND SOIL

- ✓ Regular checking and maintenance of all vehicles and equipment to minimize the risk of fuel or lubricant leakages.
- ✓ Training of relevant staff in safe storage and handling practices, and rapid spill response and clean-up techniques
- ✓ Install oil/water separators and silt traps before effluent, leaves the site
- ✓ Rivers and streams shall not be dammed for the purpose of water abstraction
- ✓ Herbicides should not be used for vegetation clearing
- ✓ Avoid vegetation clearing along stream shores and on steep slopes

BIODIVERSITY

- Promote the use of existing roads for transporting material and tower parts to the construction sites in order to reduce the project's footprint and minimize the need for new access roads
- ✓ Re-vegetation should use species locally native to the site and not use any environmental weeds for erosion control
- ✓ Implementation of the invasive species management plan as part of the Vegetation Management Plan presented in Chapter
- ✓ Retention of native species where possible along the line route/protection of endangered species or threatened specues

ES 1.5.1 Management measures for STD - HIV and awareness programs

The Contractor will develop a policy and management plan to reduce the transmission of STIs, including HIV/AIDS. This strategy will:

- Make provision for awareness, counseling and testing for all Project personnel, including voluntary testing for STDs and HIV/AIDS as part of any health screening program (workers will not be denied employment or discriminated against in any way based on their HIVstatus);
- o Provide guidance and counseling to workers with HIV/AIDS to access treatment through existing health facilities or NGO campaigns orprograms;
- 。 Ensure that all Project personnel are given specific HIV and STD prevention training;
- o Undertake information, education and communication campaigns around safe sexual practices and transmission of STDs and
- HIV/AIDS as well as condom distribution at stopping locations on key transport routes targeting commercial sex workers and truck drivers;
- o Support public health or NGO initiatives to reduce STD transmission including working through schools, women's and youth groups;
- The Contractor will provide non-local workers with a schedule and transportation that avoids limiting off-time activities at nearby communities;
- 。 Conduct community awareness campaigns in communities crossedbytheline

ES 1.5.2 Management measures of employees-communities relationship

The contractor with the supervision of the PIU will ensure:

• Respect for local residents andcustoms;

- Non-Discrimination (for example on the basis of family status, ethnicity, race, gender, religion, language, marital status, birth, age, disability, or political conviction);
- $_{\circ}$ Compliance with applicable laws, rules, and regulations of the jurisdiction;
- Zero tolerance of bribery and corruption;
- Zero tolerance of illegal activities by Contractor personnel, including prostitution, illegal sale or purchase of alcohol, sale, purchase or consumption of drugs, illegal gambling or fighting;
- Policy and sanctions against alcohol and drugs policy during working time or at times that will affect the ability to work or within accommodation camps, or acquired from outside the camp while accommodated in the camp;
- A program for drug and alcohol abuse prevention and random testing that is equivalent in scope and objectives to the policies prescribed in the code of conduct;
- Policy including sanctions against sexual harassment (for example to prohibit use of language or behavior, in particular towards women or children, that is inappropriate, harassing, abusive, sexually provocative, demeaning or culturally inappropriate);
- Compliance with applicable health and safety requirements (including wearing prescribed personal protective equipment (PPEs), taking precautions/preventing avoidable accidents and a duty to report conditions or practices that pose a safety hazard or threaten the environment);

ES 1.5.2 Gender equity and gender-based-violence (GBV)

The PIU and the Contractor will work together to continuously assess risks and identify and implement prevention, response and referral processes with respect to any cases involving Sexual Exploitation andAbuse/Gender-Based-Violence (SEA/GBV). This will focus on:

(i) training of PIU and Contractor personnel, (ii) community and worker awareness, (iii) making available safe and confidential channels of communication and complaints, and (iv) a referral system and mechanism for survivors of GBV/SEA;

PIU will develop and implement a GBV/SEA prevention and response framework that will address the following elements: How the project will put in place the necessary protocols and mechanisms to address the SEA/GBVrisks;

- How to address any GBV incidents that mayarise
- A policy against GBV/SEA including a CoC and agreed sanctions. These will be provided by the contractor and consultants as part of the Contractor ESMP. Have all employees of contractors (including sub-contractors), supervision consultants and other consultants with a footprint on the ground in the project area signCoCs;
- For purposes of the construction and operational phases of the project, develop an induction program, including a CoC, for all workers directly related to the project. *This is supposed to be recommendation as such supposed to be supported with a draft induction plan.*

ES 1.5.2 .1 Specific arrangements and management strategies for GBV risks

- Awareness Raising Strategy, which describes how workers, local communities and Project personnel will be sensitized to SEA/GBV risks, and the worker's responsibilities under theCoC;
- Referral Pathway: Identification of qualified GBV service providers (NGOs) and setting up are feral pathway so GBV survivors will be referred, and the services will be available (health, legal, psycho-social, safety planning, etc.)
- Establish a SEA/GBV Accountability and Response Framework, to be finalized with input from the contractor;

The SEA/GBV Accountability and Response Framework will include;

- Allegation Procedures: How the project will provide information to employees and the community on how to report cases of SEA/GBV, CoC breaches to the GRM;
- SEA/GBV Allegation Procedures to report SEA/GBV issues to service providers, and internally for case accountability procedures which will clearly lay out confidentiality requirements for dealing withcases;
- Mechanisms to hold accountable alleged perpetrators who breach terms stated in CoC.Disciplinary action for violation of the CoC by workers.
 It is essential that such actions be determined and carried out in a manner that is consistent with local labor legislation and applicable industrial agreements.

ES 1.5.3 FMEnv Environmental monitoring matrix

Table ES-5 is an example of the monitoring adopted for the project.

Table ES-5: Sample ESMP Matrix used for the project

	Potential impact	Receptor	pre-		post-	Responsibiliti	es	
Indicator			mitigation Significance	Mitigation or enhancement measures	mitigation Significance	Mitigation Action	Supervision	Monitoring
Air quality	Localized impairment of air quality by exhaust emissions from vehicles and equipment engines (SO ₂ , CO, NOx, CO ₂ , PM)	Affected communities in area of influence	Minor	Use good international practice: Maintain and operate all vehicles and equipment engines in accordance with manufacturers recommendations Stationary generators to be located to facilitate dispersion	Negligible	EPC Contractor	AfDB-PIU	FMENV, ISMPEnv, ASMEnv and AnSMEnv

ES 1.5.4 key ESMP implementation indicators

The following are some of the key ESMP indicators

- ✓ Number and extent of invasive flora species patches
- ✓ Number of Bird collision (or electrocution) fatalities
- ✓ Concentration of SO₂ exceeds regulatory limit during periodic monitoring
- ✓ Number of accidental spills
- ✓ Number of corrective actions implemented in response to river sedimentation increase or erosion damage

ES 1.5.5 Institutional Framework for Implementation of the ESMP

The key roles and responsibilities for the implementation of the ESMP are presented as follows.

- ✓ TCN will have principal responsibility for all measures outlined in the ESMP for the construction phase.
- The Environment Division of TCN shall be responsible for ensuring implementation of management measures during operation phase (post-commissioning), including audits, compliance monitoring, and preparation of periodic reports required by regulations the operations.
- ✓ Both may delegate responsibility to its contractors, where appropriate. In cases where other individuals or organisations have responsibility for mitigation or enhancement measures.
- Capacity building and training requirements are also described, where these relate to specific skills required to deliver the ESMP action in question. TCN's PIU is the responsible party
- TCN shall procure a RAP implementation Consultant who shall inturn hire an experienced NGO to witness the implementation processes of RAP and ESMPduring the implementation of the proposed peoject by the EPC who shall also be procured by TCN.
- ✓ PIU is responsible for the supervision of both ESMP and RAP and Reporting to AfDB all through the entire project cycle. At the end of the project the project shall be handwd over to TCN and it shall be managed by the Regional office of the project locations.
- TheEnvironment Division of TCN shall be responsible for ensuring implementation of management measures during operational phase (post-commissioning), including daily compliance, quarterly monitoring of the operational activities in the facilities and auditing of the facility every three years in line with the EIA Act. 1992.
- ✓ The Federal Ministry of Environment (FMEnv) has the responsibility for the implementation of the EIA Act 86 of 1992 by carrying out Impacts Mitigation complianceMonitoring during the project implementation by the EPC which will enable them the issuance of final Certification.
- Responsibilities in the implementation, supervision and monitoring of the ESMP are shared between multiple stakeholders, including the client, the financier, theregulators with NGO (friends) of the project in order to assist EPC carry out his activities in an environmentally sound manner.(Figure ES-3).

Figure ES-3: Roles and responsibilities for the implementation of the ESMP

Table ES-6: shows the components of each project implementation group.

Concerned ministries	Competent authorities	Project	TCN and the contractors
		(PIU),	Contractoro
 Federal Ministry of Environment (FMEnv) Imo State Ministry of Petroleum and Environment (ISMPEnv) Abia State Ministry of Environment (ASMEnv) Anambra state Ministry of Environment (AnSMEnv) 	 Federal Government of Nigeria Imo State Environmental Protection Agency (ISEPA) Imo State Ministry of Health, Women Affairs and Social Development (ISMHWASD) Imo State Ministry of Works (ISMW) Imo State Ministry of Land Survey Housing and Urban Planning (ISMLSHUP) Abia state Ministry of Physical Planning and Urban Development(renewal) (ASMPPUD) 	AfDB Project Implementation Unit (PIU)	 Transmission Company of Nigeria Local Government Area Representatives

Table ES-6: Detail of each Project implementation group

 Abia State Environmental 	
Protection Agency (ASEPA)	
Abia State Ministry of Land Survey	
and Urban planning (ASMLSUP)	
 Abia State Ministry of Women 	
Affairs (ASMWA)	
Abia State Ministry of Transport	
(ASMT)	
Anambra State Environmental	
Protection Agency (AnSEPA)	
 Anambra State Ministry of 	
Transport (AnSMT)	
• Anambra state Ministry of Lands,	
Survey and Town planning	
(ASMLST)	
Local Government Authority (LGA)	
Village chiefs of affected	
Communities	

ES1.6.4 Estimated overall budget

Geomatics Nigeria

Table ES-7 presents the summarized annual estimated ESMP budget without provision for compensation (RAP).

	Construction	Phase	Operation Phase		
Component	Cost Estimates (NGN)	Frequency	Annual Estimates	Component	Estimate per three years
Air quality	800,000	quarterly	3,200,000	Noise, vibration & EMF	880,000
Noise, vibration	600,000	quarterly	2,400,000	Pollution Control /Emmergency 10,90 Response 10,90	
Emergency Response (Risk	4,000,000	Daily at Project	16,000,000	Internal Monitoring environmental Internal Audit	3,700,000

Table ES-7: Estimated annual overall budget for ESMP (without RAP)

	Construction	Operation Phase			
	Cost		Annual	Component	Estimate
Component	Estimates	Frequency	Estimates		per three
	(NGN)				years
Management of		site/		(Monitor operational	
Petroleum Products		Monthly		Technology, Condition of	
in use)		during		Equipment, Facility, etc)	
		OPS			
Water quality	3,200,000		6,400,000	Vegetation integrity and Fauna	
Aquatic ecology		Twice e		protection	350,000
		I WICE a			
		year		Stakeholder relations	40.000.000
				Management/	10,900,000
Visual amenities			1,200,000		
Sanitation/wastes	3.000,000	Quarterly		Lealth Cafety and Casurity	2 250 000
management				Health, Salety and Security	2,330,000
Vegetation integrity	500.000	Once a	350,000	House	5 000 000
and Fauna protection	500,000	year		keeping/Sanitation/Sensitization	5,000 000
Stakeholder relations			28,800,000	Environmental Audit (Holistic	
Management	10,200,000	quarterly		External Audit of TCN facility in	15,000,000
management				line with EIA Act 86, 1992	
Health, Safety and	3 300 000	Quarterly	1,200,000	Health Safety and Security	350 000
Security	0,000,000	Quarterry			000,000
Project Monitoring				Toolbox Training on Hazardous	7,000,000
(Logistics)	2,000,000	Quarterly		material handling, storage and	
				disposal	
		Monthly at	2,000,000	Waste management	12,000,000
Toolbox training on	500 000	the			
Hazardous materials	500,000	Regional			
		Level			

	Construction	Operation Phase			
Component	Cost Estimates (NGN)	Frequency	Annual Estimates	Component	Estimate per three years
Develop and implement GBV/SEA Framework and Action Plan	1, 034, 125		4, 136, 500		
Total per project phase			61,550,000		63,430,000
Overall estimate			124	980,000	

CHAPTER ONE

INTRODUCTION

1.1 Background Project Information

Transmission Company of Nigeria (TCN) wholly owned by the Government is in charge of the responsibility of receiving bulk electricity generated by the various power generation stations to theload control centers across the country and out sode the country, ensuring efficient and cost-effective transmission, system operation, and improved service delivery. Huge gap between generation and wheeling capacity necessitated the launch of the Transmission, Rehabilitation and Expansion Program (TREP) involving several Developmental Financial Institutions (FDIs). The scope covers the entire country. To achieve the TREP goals, several subset programs were established, including the Nigeria Transmission Expansion Program (NTEP). To ensure efficiency and timely service delivery, NTEP was conceived to be developed in which the Reconstruction of 330KV SC transmission line in the south-east (Alaoji - Onitsha) of Nigeria to be financed by African Development Bank (AfDB) is one.

The Abia and Anambra States targeted at improving power supply toAbia, Anambra and Imo States, in order to achieve transmission capacity of 20,000 MW by 2022. The upgrade of the transition line in Abia, Anambra and Imo States ("Alaoji, Ihiala and Onitsha Transmission Project") is to be financed through a loan from African Development Bank (AfDB). The Transmission Company of Nigeria (TCN) is the implementing agency and owners of the project when completed. This entire project plans reinforcement of transmission capacity, enhancement of wheeling capacity of electricity, improvement of reliability of electricity supply and reduced electric current lossesby introducing N-1 transmission system by balancing the installed capacity across the country. It will contribute towards accelerated growth of the economy development and improve thesocio-economic activities of the communities.

In line with the EIA procedural Act, AfDB operational Safeguards and in alignment with the Environmental and Social Management Framework (ESMF), this type of project needs to undergo an environmental and social impact assessment as required by the EIA Act No. 86 of 1992.

This ESIA study will, therefore, aim to identify potential and significant adverse environmental and social impacts and to propose means of mitigating them to acceptable levels. The ESIA will also consider the

capacity of existing institutions to manage the predicted environmental and social issues and implement an Environmental and Social Management Plan (ESMP) for this purpose.

This ESIA is also prepared in compliance to the Federal Government of Nigeria (FGN) Environmental Impact Assessment (EIA) Law, and the Federal Ministry of Environment Guidelines. It is also compliant to the Environmental and Social operational safeguards of the AfDB. The AfDB has various instruments for addressing the environmental and social impacts of projects. The development of the NTEP1 project initiative will trigger all the five AfDB Operational Safeguards (OS) including OS 1: Environmental and social assessment; OS 2: Involuntary Resettlement: Land Acquisition, Population Displacement and compensation; OS 3: Biodiversity and Ecosystem Services;OS 4: Pollution Prevention and Control, Greenhouse Gases, Hazardous Materials, Resource Efficiency; and OS 5: Labour Conditions; Health and Safety. In light of the above, TCN commissioned Geomatics Nigeria Limited (GNL), an Environmental Consultancy firm based in Ibadan to conduct the ESIA/RAP studies. Other scopes to be covered by GNLinclude to

- identify and assess the potential environmental and social impacts and recommend appropriate mitigation strategies and prepare ESMP.
- identify and enumerate the Project Affected Persons, Communities and their economic activities based on AfDB operational Safeguards as outlined in the Resettlement Policy Framework.
- Prepare HSE management plan for the proposed project
- Prepare transport management plan for this project and amongst others
- Stakeholders engadement plan for the community enhancement programs.

1.2 The Proponent

The Proponent of the proposed project is the Transmission Company of Nigeria (TCN)

The mandate of TCN includes the following;

Geomatics Nigeria

- Assets management of the High Voltage Transmission System Operations as well as generation dispatch functions.
- Operating as the provider of open access transmission service based on regulated transmission tariff and non-discriminatory system operations and economic dispatch services within a regulatory framework provided by the Nigerian Electricity Regulatory Commission (NERC), the Grid Code and Market Rules.
- Load forecasting and system expansion planning.

- Acquiring the necessary ancillary services for defined reliability and quality service standards.
- Managing the market settlement system.
- Development of the network through the construction of new transmission lines and substations for efficient Transmission and System operations,
- Ensuring that all stakeholders adhere to the Grid Code, Distribution Code and Market rules.

Table 1.1 provides contact details of the proponent.

Table 1.1: Proponents Contact Details

Project Proponent	Transmission Company of Nigeria (TCN)
Address	14, Zambezi Crescent, Maitama, Abuja
Project Manager	Engr. A. M. Abdulazeez
Contact Email	afdb.isdb@gmail.com

1.3 Purpose of the ESIA Report

The purpose of the study is to assess the potential environmental and social impacts of the proposed NTEP 1 project development and prepare an Environmental and Social Impact Assessment (ESIA) that includes a detailed project-specific, and implementable, stand-alone Environmental and Social Management Plan (ESMP), which will include necessary mitigation measures. The ESIA will establish modalities of implementing the rehabilitation works in line with the Nigeria Environmental policies and laws and the AfDB Integrated Social Safeguards (ISS).

1.4 Objectives of the ESIA

The specific objectives of the proposed studies are to

- To ascertain the viability of the project environmenyally, Socially and Economically
- ensure compliance with national and AfDB environmental regulations and policies, industry best
 practicable standards and identify existing/expected environmental regulations that will affect the
 development while profferingstrategies for the applications of the available standards and targets.
- establish the existing state of the environment including sensitive components within the project area and area of potential project influence.

 generate baseline data to characterize the existing environment as well as socio-economic and health conditions and for subsequent monitoring and evaluation of how well the mitigation measures have been implemented during the project life cycle;

I INF

ESIA REPORT FOR THE PROPOSED RECONSTRUCTION OF ALAOJI-ONITSHA 330kV DC QUAD CORE TRANSMISSION

- identify and analyze alternatives to the proposed projects, including sites, technology, layout, etc.;
- conduct an Environmental and Social Assessment of the proposed TL in order to identify and assess the anticipated potential environmental and social impacts of the proposed projects both positive and negative;
- propose cost-effective mitigation measures during decommissioning, re-construction and operation to avoid and mitigate identified adverse impacts and also enhance beneficial impacts
- Identify any future environmental issues and concerns which may affect the development;
- prepare and cost the ESMP, detailing mitigation measures as well as institutional roles and responsibilities in its operationalization.
- Recommend an environmental management program for the rehabilitation of the project including compliance, monitoring, auditing and contingency planning; provide the basis for co-operation and consultation with regulatory and non- regulatory authorities and the public.
- assist project design and planning by identifying those aspects across all phases of the project life cycle which may cause adverse environmental, social, health and economic impacts.
- Carry out consultations with relevant stakeholders, including potential project- affected persons, to
 obtain their views and suggestions regarding the environmental and social impacts of the proposed
 development of the NTEP project. The outcome of the consultations will be reflected in this ESIA
 report and will be incorporated into the project design as appropriate; and
- Provide an opportunity for interested and affected persons to be engaged/involved in the disclosure process.

1.5 Scope of the Study

The study will be divided into four major parts to ensure adequate coverage and ease of potential impact evaluations:

- 1. Legal and Administrative framework
- 2. Project and process description

Geomatics Nigeria 📖

3. State of the environment and

4. Socio-economic issues.

Geomatics Nigeria

The scope of ESIA study usually entail but not limited to the following:

Review of approved secondary data and literature of the proposed study/project area, review of relevant legislative policies and frameworks, consultations with relevant project stake holders, field data sampling and laboratory/statitiscal analysis for baseline data acquisition, assessment of potential and associated impacts, proffering mitigation measures to adverse an negative impacts and enhancement measures to the positive and beneficial impacts, development of a transmission - line based implementable environmental and social management plan, etc.

1.6 The Project justification

Due to significant shortage of power supply capacity compared to demand, load allocation has been implemented nationwide in Nigeria. If all power stations currently being constructed under the Nigeria Transmission Expansion Program, a subset of the wider Transmission Expansion Program become operational, the installed generation capacity is expected to improve by the end of 2022. The existing and proposed transmission line system in Nigeria is shown in Figure 1.1.

Figure 1.1 Existing On-Going and Completed Transmission and System Operation Infrastructure

Increase in the generating capacity without a commensurable expansion in the transmission architecture as shown in Figure 1.1, would result in the produced power unable to be wheeled into the national grid. Worst still, the existing transmission system do not provide detour routes for use when equipment accidents occur, and when system reliability is low. Nigeria descent into recession in late 2015 corresponded to period when transmission capacity (less than 40,00MW) was also at its lowest ebb (NERC 2018), implying a strong correlation between boost in economic activities and improved power availability.

1.7 Summary the Key Activities Undertaken in Line with the EIA Procedures in Nigeria

Table 1.2 outlines regulatory requirements within the Nigerian Regulatory framework.

Geomatics Nigeria

ESIA Step	Description	Status	Remark
ESIA registration	This step initiates the ESIA process providing	This step has	EIA was duly
	draft terms of reference, letter of Introduction	been satisfied	registered by
	from the client and a covering letter		the FMEnv.
			See Appendix
			1.1 for ToR
Reconnaisance/Site	This step provides the regulatory authorities	This step has	Authority visit
verification visits by the	(FMEnv, affected state and LGAs Environment	been satisfied	was
Client and regulator with	Ministries and Departments respectively) and the		conducted
the Consultant	supervisory Ministry (Ministry of Works, Power		and all
	and Housing) opportunity to appraise the		revelant
	proposed project		stakeholder of
			the project
			were in
			attendant
Preliminary	Meeting with the State's representatives for a	This step was	See
Stakeholders' meeting	kickoff before the scoping execise and hand over	done	Attendant
	of site to the Consultant		register
Scoping	Scoping workshop was conducted to gain early	This step has	See Appendix
	stakeholders' input into the ESIA process	been satisfied	1.1 for ToR
Report writing	Scoping Report was drafted from the data	Was done in April	Draft Report
	gathered through first Mission's Visit to the site		has been
			submitted to
			FMEnv

Table1.2: ESIA Process in Nigeria

Scoping Report and	The scoping report containing Minutes of the	Was done in May	Draft Report
Minutes of the	Preliminary stakeholders meeting was submitted		has been
Preliminary	to the FMEnv		submitted to
stakeholders meeting			FMEnv
Submission to Federal			
Ministry of Environment			
Project Categorization	Steps 2 and 3 provides the regulatory Ministry	Official Terms of	See Appendix
, ,	with the project overview, environmental settings	Reference was	1.4 for ToR
	and stakeholder concerns/perception to be	issued' The	Letter yet to
	factored into the categorization process	categorization	be delivered
	5	has been	by FMEnv
		changed from 2	5
		to 1 due to the	
		number of PAPs	
Data Gathering	Data gathering exercise was conducted with	This was	Delegates
Exercise	active involvements of FMEnv, State, LGAs and	conducted from	from the
	TCN officials	August 26th – 2 nd	FMEnv
		September 2019.	actively
			supervised
			the data
			gathering
			process
Submission of Draft	FMEnv Specified copies of draft ESIA report is	TBD	Not
ESIA report	submitted		Applicable
Public Disclosure	This step provide avenue for the ESIA findings to	TBD	Not
	be made available to the wider public over a 21-		Applicable
	day period		
Panel Review	This step subjects the ESIA report to experts'	TBD	Not
	evaluation, assessment and ventilation of		Applicable
	stakeholders' observations		
Submission of Final	On receipt of comments from FMEnv and	TBD	Not
ESIA report	incorporation, a final report is developed and		Applicable
	submitted to FMEnv within a specified time		
	frame.		
Issuance of Approval	This conveys the approval to construct on the	TBD	Not
Certificate	client		Applicable

1.8 Report Structure

Table 1.3 provides structure of the report.

Table 1.3: Structure of the Report

Chapter	Content
Chapter 1	Introduction
	Provides a background to the proposed Project and the ESIA and provides
	information about the Proponent, the ESIA consultant team and the report's main
	goals and structure
Chapter 2	Legal and Regulatory Framework
	Outlines the legal framework within which the ESIA will be undertaken and identifies
	other environmental legislation, standards and guidelines applicable to the Project.
Chapter 3	Project Justifications and Alternatives
	presents the project justification, the need/value and its envisaged sustainability as
	well as the project development and site/route options considered
Chapter 4	Project Description
	Discusses the desirability of the Project and provides a description of the Project
Chapter 5	Area of Influence
	Defines the areas of direct and indirect influence of the Project
Chapter 6	Baseline Assessment
	Presents the approach and methodology for the ESIA process. It also describes the
	biophysical and socio-economic baseline of the Project's areas of influence including
	public participation process
Chapter 7	Stakeholder Consultations
	Presents the list of the stakeholders consulted and summary of the minutes of meeting
	held with the stakeholders
Chapter 8	Impact Assessment and Mitigation Measures
	Identifies and assesses potential Project impacts (biophysical and socio-economic
	impacts) and defines relevant mitigation measures to avoid, reduce, compensate or
	enhance Project impacts (as applicable).
Chapter 8	Environmental and Social Management Plan
	Presents the Project ESMP, organizing all mitigation, management and monitoring
	requirements set out in the EIS into thematic management programs.
Chapter 10	Conclusions and Recommendations
	Presents the main findings of the EIS report and recommendations for the following
	phases of the Project
Annexures	Annexes
	Provides support information to the EIS, in the form of annexes

The study will be divided into four major parts to ensure adequate coverage and ease of potential impact evaluations:

- 1. Legal and Administrative framework
- 2. Project and process description
- 3. State of the environment and
- 4. Socio-economic issues.

The scope of ESIA study usually entails but not limited to the following:

- Review of approved secondary data and literature of the proposed study/project area,
- review of relevant legislative policies and frameworks,
- consultations with relevant project stake holders,
- field data sampling and laboratory/statitiscal analysis for baseline data acquisition,
- assessment of potential and associated impacts, proffering mitigation measures to adverse any negative impacts and enhancement measures to the positive and beneficial impacts,
- development of a transmission line based on implementable environmental and social management plan, etc.

CHAPTER TWO

REGULATORY AND INSTITUTIONAL FRAMEWORK

2.1 Introduction

The constitution of Nigeria (1999), as the national legal order, recognizes the importance of improving and protecting the environment and makes provision for it in the following relevant sections:

Section 20 makes it an objective of the Nigerian State to improve and protect the air, land, water, forest and wildlife of Nigeria.

Section 12 establishes, though impliedly, that international treaties (including environmental treaties) ratified by the National Assembly should be implemented as law in Nigeria.

Sections 33 and 34 which guarantee fundamental human rights to life and human dignity, respectively, have also been argued to be linked to the need for a healthy and safe environment to give these rights effect.

This Chapter provides the Nigerian administrative framework and describes the relevant Nigerian legislation,

AfDBand industry standards and that the Project will follow. Specifically, this Chapter provides a summary of;

- Nigerian administrative and legislative organization;
- National environmental and social legislation deemed applicable to the Project;
- AfDB Operational Safeguards to be triggered by this project
- Other international conventions to which Nigeria is a signatory;
- International standards and guidelines to which the Project will also align; and
- TCN internal standards and guidelines with which the project will also be consistent.
- The affected States and LGAs Environmental Edicts and Bye-Laws respectively
- ISO 45001:2018 Occupational Health and Safety Management Systems Requirement
- ISO14001:2015 Environmental management systems: Requirements with guidance for use;

2.2 National Environmental & Social Policies

2.2.1 National Policy on the Environment (1988)

The National Policy on the Environment describes the conceptual framework and strategies for achieving the overall goal of sustainable development in Nigeria. Specifically, the goals of the Policy include to:

• Secure a quality of environment adequate for good health and human well-being;

- Conserve and use the environmental and natural resources sustainably for the benefit of present and future generations;
- Restore, maintain and enhance ecosystems and ecological processes essential for the functioning
 of the biosphere to preserve biological diversity and the principle of optimum sustainable yield in the
 use of living natural resources and ecosystems;
- Raise public awareness and promote understanding of the essential linkages between the environment, resources and development, and encourage individual and community participation in environmental improvement efforts; and
- Co-operate with other countries, international organizations and agencies to achieve optimal use of trans-boundary natural resources and effective prevention or abatement of trans-boundary environmental degradation.

2.2.2 EIA Act Cap E12 LFN 2004

The EIA Act No. 86 of 1992 as amended by EIA Act Cap E12 LFN, 2004 is the principal legislative instrument relating to activities that may likely or to a significant extent affect the environment. The Act sets the goals and objectives of EIA and procedures including the minimum requirements for the conduct of EIA of public or private projects. The Act makes EIA mandatory for all major development projects likely to have adverse impacts on the environment and gives specific powers to FMEnv. to facilitate environmental assessment of projects in Nigeria. The FMEnv categorizes mandatory study activities into three categories: Category 3 activities have beneficial impacts on the environment. Full EIA is not mandatory Category 2 activities (unless within the Environmentally Sensitive Area) while Category 1 activities requires full and mandatory EIA. The category 1 projects ESIA are also required to acquire or present data on the two seasons prevalent in the country. Projects are pre-listed into these categories based on type and whether it would involve physical intervention of the environment. Either the listing or the result of an Initial Environmental Evaluation (IEE) is used to determine projects requiring full EIA. All utility scale power projects, including construction of substations and transmission power lines, are listed under Category 1 and are therefore required to undertake ESIA.

2.2.3 National Environmental Standards and Regulations Enforcement Agency (NESREA) Act 2007

The Act established a body known as NESREA to be the enforcement Agency for environmental standards, regulations, rules, laws, policies and guidelines in Nigeria. The Act empowers the Agency to have responsibility for the protection and development of the environment, biodiversity conservation and sustainable development of Nigeria's natural resources in general and environmental technology, including coordination and liaison with relevant stakeholders within and outside Nigeria on matters of enforcement of environmental standards, regulations, rules, laws, policies and guidelines.

2.2.4 National Environmental Protection (Management of Solid and Hazardous Wastes) Regulations, 1991

These Regulations address handling and management of solid, radioactive and (infectious) hazardous waste. They define the objectives of management of solid and hazardous waste, the functions of appropriate Government agencies and obligations of industries. The Regulations mandate all industries to inform FMEnv of all toxic, hazardous and radioactive substances which they keep in their premises and/or which they discharge during their production processes. Schedule 12 and 13 of the Regulations provide a comprehensive list of all waste deemed to be hazardous and dangerous.

2.2.5 National Environmental (Sanitation and Wastes Control) Regulations, 2009

The Regulations provide the legal framework for the adoption of sustainable and environment friendly practices in sanitation and control of solid wastes, hazardous wastes and effluent discharges to minimize pollution. Part 3 of the Regulations states that all owners or occupiers of premises shall provide waste receptacles for storage before collection by licensed waste managers. In addition, the Regulations make it mandatory for facilities that generate waste, to reduce, re-use, recycle and ensure safe disposal to minimize pollution. The Regulations also spell out roles and responsibilities of State and Local Government Authorities.

2.2.6 National Environmental Protection (Pollution Abatement in Industries and Facilities Generating Wastes) Regulations, 1991

The Regulations prohibit industry or facility from release of hazardous or toxic substances into the air, water of Nigeria's ecosystems beyond the permissible limits of FEPA (now FMEnv). The Regulations further charge any industry or facility to:

- Establish and maintain a pollution monitoring unit within their premises;
- Ensure on site pollution control; and
- Assign the responsibility for pollution control to a person or body accredited by the FMEnv. Section 5 of the Regulations mandate industry or facility to submit to the nearest office of FMEnv a list of chemicals used in the manufacture of its products, details of stored chemicals and storage conditions and where these chemicals were obtained, bought or sold.

2.2.7 National Environmental (Electrical/Electronic Sector) Regulations, 2011

The principal thrust of this Regulation is to prevent and minimize pollution from all operations and ancillary activities of the Electrical/Electronic Sector. This Regulation covers both new and used Electrical/Electronic Equipment (EEE/UEEE). The principles of the Regulations are anchored on the 5Rs which are; Reduce, Repair and Re-use, Recycle and Recover as the primary drivers of the sector.

2.2.8 National Environmental (Noise Standards and Control) Regulations, 2009

The purpose of these Regulations is to ensure maintenance of a healthy environment for all people in Nigeria, the tranquillity of their surroundings and their psychological wellbeing by regulating noise levels. The Regulations prescribe the maximum permissible noise levels on a facility or activity to which a person may be exposed and provide for the control of noise and for mitigating measures for the reduction of noise.

2.2.9 National Environmental (Surface & Groundwater Quality Control) Regulations 2011

The purpose of these Regulations is to restore, enhance and preserve the physical, chemical and biological integrity of the nation's surface waters and to maintain existing water uses. The Regulations also seek to protect groundwater sources by regulating the discharge of hazardous wastes, fossil fuels energy and any other substances having the potential to contaminate groundwater. The Regulations also include amongst others, the application and general provisions of water quality standards for various uses such as agriculture, industrial, aquatic life and recreation.

2.2.10 Land Use Act CAP L5 LFN 2004

The Land Use Act is the legal framework for land acquisition and resettlement in Nigeria. The Act stipulates that all land in Nigeria is vested in the Governor of each State, to be held in trust for the use and common

benefit of all people. The administration of urban land is directly under the control and management of the Governor, whereas non-urban land is under the control and management of the Local Government Authority. By implication, the Governor has the right to grant statutory rights of occupancy to land while the Local government has the right to grant customary rights of occupancy. At any rate, all lands irrespective of the category belongs to the State while individuals only enjoy a right of occupancy as contained in the certificate of occupancy, or where the grants are "deemed". Thus, the Land Use Act is the key legislation that has direct relevance to resettlement and compensation in Nigeria. The Act makes it lawful for the Governor to grant statutory rights of occupancy for all purposes; grant easements appurtenant to statutory rights of occupancy and to demand rent. The local Government, under the Act can enter, use and occupy for public purposes any land within its jurisdiction that does not fall within an area compulsorily acquired by the Government of the Federation or of relevant State; or subject to any laws relating to minerals or mineral oils. In summary, the Acts gives the government the right to acquire land by revoking both statutory and customary rights of occupancy rights of occupancy for the overriding public interest. In doing so however, the Act equally specifies that the State or Local Government should pay compensation to the current holder or occupier with equal value.

2.2.11 Other Applicable National E&S Legal Provisions

A summary of other relevant existing Nigerian laws and regulations is provided in Table 2.1.

Laws and Regulations	Summary of Provisions
Forestry Law CAP 51 LFN 1994	The Forestry Law prohibits any act that may lead to destruction of or cause injury to any forest produce, forest growth or forestry Property in Nigeria. The law prescribes the administrative framework for the management, utilization and protection of Forestry resources in Nigeria.
Endanger Species (Control of International Trade and Traffic) Act CAP	The Act provides for the conservation and management of Nigeria's wildlife and prohibits the hunting, capture and trade of Endangered species.

 Table 2.1:
 Other Relevant National E&S Laws and Regulations

E9 LFN 2016	
Harmful Wastes (Special Criminal Provisions etc.) Act CAP HI LFN 2004	An Act to prohibit the carrying, depositing and dumping of harmful waste on any land, territorial waters and matters relating there to including penalty for offences for individuals and corporatebodies. The Act prohibits all activities relating to the purchase, importation, transit, transportation, deposit, storage or, sale of harmful wastes.
National Environmental (Ozone Layer Protection) Regulations, 2009	These provisions seek to prohibit the import, manufacture, sale and the use of ozone-depleting substances as well as materials that contain these substances.
National Environmental (Soil Erosion and Flood Control) Regulations, 2011	The overall objective of these Regulations is to control erosion and flooding by checking all earth-disturbing activities, practices or developments for non-agricultural, commercial, industrial and residential purposes.
Factories Act (CAP F1), 2004	The Act establishes a legal framework for the registration of factories and to make adequate provisions regarding the safety of workers against occupational hazards and to impose penalties for any breach of its provisions. All workplaces are covered by this Act.
Employee Compensation Act, 2010	The Act provides compensation to employees who suffer from occupational diseases or sustain injuries arising from accidents at workplace or in the course of employment. Payment of compensation (to the worker or to his dependents in case ofdeath) by the employer is

Geomatics Nigeria

	rooted in the accepted principle that the employer has a duty of care to protect the health, welfare and safety of workers at work.
Nigerian Urban and Regional Planning Act CAP 138 LFN 2004	The Act is aimed at overseeing a realistic, purposeful planning of the country to avoid overcrowding and poor environmental conditions. The Act establishes that an application for land development would be rejected if such development would harmthe environment or constitute a nuisance to the community.
EIA Procedural	Provides Procedural context and guidance for the conduct of EIA
Guidelines, 1995	in Nigeria
Natural Resources	The Natural Resources Conservation Act CAP 268 LFN 1990 is the
Conservation Act CAP 268 LFN 1990	Most direct existing piece of legislation on natural resources conservation. The Act establishes the Natural Resources Conservation Council, which is empowered to address soil, water, forestry, fisheries and wildlife conservation by formulating and implementing policies, programs and projects on conservation of the country's natural resources.

2.2.12 Energy Sector Policies and Legal Provisions

2.2.12.1 National Energy Policy, 2003

The National Energy Policy highlights strategies for systematic exploitation of the energy resources, the development and effective use of energy manpower, supply of rural energy needs, efficient energy technology development and use, energy security, energy financing and private sector participation. The strategies are harmonized and grouped into short, medium and long – term measures for easier implementation. This policy is related to this program being an energy transmission program.

2.2.12.2 Electric Power Sector Reform Act 2005

This Act provides for the licensing and regulation of the generation, transmission, distribution and supply of electricity in Nigeria. The Act establishes the NERC and empowers it to license and regulate persons engaged in the generation, transmission, system operation, distribution and trading of electricity. The Act also makes special provisions for acquisition of land and access rights as it relates to generation,

transmission and distribution companies. The EPSR Act also affords any aggrieved party the opportunity of being heard publicly in accordance with Sections 36 and 44 (1) (b) of the 1999 Constitution, as amended.

2.2.12.3 Energy Commission of Nigeria Act CAP 109 LFN 1990

The Act was promulgated to create the Energy Commission of Nigeria (ECN) with responsibility for coordinating and general surveillance over the systematic development of the various energy resources of Nigeria. Subject to this Act, the ECN is charged with the responsibility for the strategic planning and co-ordination of national policies in the field of energy in all its ramifications. The mandates of ECN include statistical analysis of Electricity Generation, Transmission and Distribution.

2.2.12.4 Nigerian Electricity Supply and Installation Standards (NESIS) Regulations 2015

These Regulations provide guidance, license terms and conditions to any person engaged in the generation, transmission, distribution, system operation, and trading in electricity or in any aspect in the value chain of electricity supply, including but not limited to engineering designs, installations, commissioning, decommissioning and maintenance of electric power systems for the purpose of achieving safe and reliable supply, and utilization of electricity in Nigeria. The regulation also states among other things Health, Safety and Environment issues including approved Right of Way for Transmission and Distribution lines in Nigeria. According to the NESIS 2015, Right of Way (RoW) is the distance of any structure from the middle conductors of overhead power lines of any voltage level. The approved Right of Way for different voltage Levels are presented in Table 2.2.

Voltage Levels	Right of Way in Metres	
330kV	50	
132kV	30	
33kV	15	
11kV	11	

Table 2.2: Right of Way of Transmission Lines in Nigeria

Source: NESIS 2015

2.2.12.5 Acquisition of Land Access Rights for Electricity Projects Regulations, 2012

This is a Nigerian Electricity Regulatory Commission Act which provides a regulatory framework for the acquisition of land and access rights for electricity projects in Nigeria. This Act also stipulates provisions for the payment of compensation and resettlement of persons affected by the acquisition of their land for the establishment of electricity projects as well as the monitoring and evaluation of project designs of licensees to ensure compliance with environmental standards. The Regulations apply to the acquisition of land access rights for electricity in Nigeria, including projects related to generation, transmission and distribution of electricity.

2.2.12.6 Roadmap for Power Sector Reform of 2010

The Roadmap reviews and fine-tunes plans and strategies to finalize the drive to complete power sector reform and sets the nation on a steady course to produce clean and efficient electricity for her citizenry at competitive rates. The Roadmap contained two core and fundamental objectives, which are;

- To transition the Nigerian Power Sector into a private sector led market by implementing the EPSRA 2005 transition ("The Reform Objective") and
- To support and improve service delivery levels during this transition to the Nigerian public ("The Service Delivery Objective").

2.2.13 Nigerian Gender Related Policies

2.2.13.1 The Gender Policy Framework in Nigeria

The 1999 Constitution OF the Federal Republic of Nigeria prohibits discrimination based on places of origin, sex, religion, status, ethnic or linguistic association. Successive governments have always demonstrated commitment to upholding this and to promote gender equality and women's empowerment in varying degrees. To facilitate gender equality and women's empowerment, the FGN created favorable national legal and policy frameworks and put in place institutional mechanisms in this regard. Moreover, Nigeria, as a member of the United Nations, signed and ratified the various relevant international instruments, treaties and conventions without reservation. These instruments have always emphasized that member nations put in place the necessary mechanisms needed to eliminate gender discriminations, ensure equality and human dignity to all men and women.

The government of Nigeria in 2000 adopted a National Policy on Women, in 2006; it was reviewed and upgraded to become the National Gender Policy. Other key government policies with gender equality and empowerment of women frameworks include the National Economic Empowerment and Development Strategies (NEEDS) in May 2004; and the Transformation Agenda of the immediate past administration who in developing the Vision 2020, had a 'Special Interest Group on Women' to oversee –the development of policy statements that engender 'sustainable human and national development built on equitable contribution of the Nigerian women, men and children'.

2.2.13.2 National Gender Policy, 2006

The overall goal of the National Gender Policy of Nigeria is to promote the welfare and rights of Nigerian women and children in all aspects of life: political, social and economic. The policy seeks to plan, coordinate, implement, monitor and evaluate the development of women in the county. In concrete terms, the National Gender Policy in Nigeria focuses on:

- Contribution towards women's empowerment and the eradication of unequal gender power relations in the workplace and economy, in trade unions and in broader society;
- Encouragement of the participation, support and co-operation of men in taking shared responsibility for the elimination of sexism and redefining of oppressive gender roles;
- Increase the participation of women in leadership and decision-making;
- Ensure that through labour legislation and collective bargaining, the particular circumstances of women are considered and that measures are promoted to eliminate discrimination on the basis of gender;
- Ensure that there is a gender perspective in all sectors of development

2.2.14 Nigerian Institutional Provisions and Arrangement

2.2.14.1 Federal Ministry of Environment

The Federal Ministry of Environment (FMEnv.) which was formerly known as the Federal Environmental Protection Agency (FEPA) was established in 1999 through Decree No. 58 of 1988 as amended by Decree No. 59 of 1992. The Ministry is the statutory government institution mandated to coordinate environmental protection and natural resources conservation for sustainable development in Nigeria.

2.2.14.2 Federal Ministry of Power Works and Housing

The Federal Ministry of Power Works and Housing (FMPWH) has the overall responsibility for the provision of power in the country by supervising the implementation of generation, transmission and distribution projects in the sector and facilitating the emergence of a private sector led competitive and efficient electric power industry. The Ministry is guided by the provisions of the National Electric Power Policy (NEPP) of 2001, the Electric Power Sector Reform (EPSR) Act of 2005, and the Roadmap for Power Sector Reform of August 2010. The Ministry has six (6) parastatal relevant to the implementation of sub-projects:

- Transmission Company of Nigeria (TCN)
- Nigerian Electricity Regulatory Commission (NERC),
- The Rural Electrification Agency (REA), and
- Nigerian Bulk Electricity Trading Plc (NBET)
- Nigerian Electricity Liability Management Company (NELMCO)
- Nigerian Electricity Management Services Agency (NEMSA)

2.2.14.2.1 Transmission Company of Nigeria (TCN)

TCN was incorporated in November 2005, emerging from the defunct National Electric Power Authority (NEPA) as a product of the merger of the Transmission and Operations sectors on April 1, 2004. Being one of the 18 unbundled Business Units under the Power Holding Company of Nigeria (PHCN), the company was issued a transmission license on 1st July 2006. TCN licensed activities include electricity transmission, system operation and electricity trading which is ring fenced.

2.2.14.2.2 Nigerian Bulk Electricity Trading Plc. (NBET)

The Nigerian Bulk Electricity Trading Plc., (NBET) (otherwise known as the Bulk Trader) was incorporated on July 29, 2010 as the Special Purpose Vehicle (SPV) to carry out the bulk purchase and resale of electric power and ancillary services from Independent Power Producers (IPP) and from the successor generation companies" to distribution companies. NBET purchases electricity from the generating companies through Power Purchase Agreements (PPAs) and sells to the distribution companies (DisCos) and eligible customers through Vesting Contracts. The role of NBET is more of transactional agreements between generation and distribution companies while TCN transmit the power from Generator to Distributors and eligible Customers.

2.2.14.2.3 Nigerian Electricity Regulatory Commission (NERC)

NERC is an independent regulatory body, established by the EPSR of 2005 to undertake technical and economic regulation of the Nigerian electricity supply industry. Essentially, NERC is set up to, license operators, determine operating codes and standards, establish customer rights and obligations and set cost reflective industry tariffs. NERC is responsible for the review of electricity tariffs, subsidy policies, promotion of efficient and environmentally friendly electricity generation and enforcing standards for electricity creation and use in Nigeria. NERC is largely responsible for regulating tariffs of power generating companies. NERC also issues eligible customers license to which TCN can supply directly.

2.2.14.2.4 Nigerian Electricity Liability Management Company (NELMCO)

NELMCO was incorporated under the Companies and Allied Matters Act 2004 as an SPV under the directive of the National Council on Privatization (NCP) as part of the transaction structure and strategy for the privatization of the power sector to provide investors' confidence that investment in PHCN Successor Companies (SCs) will be free of encumbrances from possible future litigations arising from the huge legacy debts, Staff Pensions, Suppliers and third party liabilities. The core objective of the organization is to assume and administer the stranded debts and non-core assets of PHCN pursuant to the provisions of EPSR Act 2005, assume and manage pension liabilities of employees of PHCN, hold the non-core assets of PHCN, sell or dispose of or deal in any manner for the purpose of financing the payment of debts or other related matters, take over the settlement of PHCN's Power Purchase Agreement (PPA) debts obligations, legacy debts and any other liabilities as may be determined by the National Council on Privatization within NESI from time to time and sell, let, mortgage, dispose of, deal in any of the property or non-core assets of the company as may be expedient with a view to promoting its objects.

2.2.14.2.5 Nigerian Electricity Management Services Agency (NEMSA)

The Nigerian Electricity Management Services Agency (NEMSA) Formerly the Electricity Management Services Limited (EMSL), is one of the successor companies established by the Federal Government in line with the provision of part 1Section 8 of the Electric Power Sector Reform (EPSR) 2005, the Supplementary Regulation number 46/47 (B499 452) of the Federal Government Official Gazette No. 374 0f 2010 and the NEMSA Act No.6 of 2015. The main function of the agency according to the provisions of the NEMSA Act 2015 and Statutory Regulations is inspect, test and certify all Electrical Installations in Power Plants / Stations,

Transmission Networks / Systems, Distribution Networks/Systems, and other Allied Industries and Workplaces where Electricity is used. All electrical Installations in NTEP1 program will have to go through the testing and certification of NEMSA before they can be declared fit for use.

2.3 Affected States Environmental Laws

Table 2.3 outlines applicable environmental laws in the affected states.

States	Laws	Description
Abia State	Basic Environmental Law	This law establishes the basic environmental sanitation practice (regulation
	No. 1of 2004 amended in	and enforcement) in Abia State. The law spells out the Abia State
	2013	Environmental Protection Agency (ASEPA) as a parastatal under the Office
		of the Governor, Government House Abia state. The individuals who shall by
		appointment (by the Governor) see to its management, the agency as an
		authorization, permission, registration and approval granting body as regards
		sitting of base stations and any other associated operations as well as
		penalties for any who contravenes the provisions of the same law which
		upholds basic environmental sanitation practice in Abia State.
	Policy on Environment	This policy emphasizes state government efforts to sustainable management
	(2010)	of the Abia environment with regards to Erosion control.
	Flood and Erosion	This policy is to promote sustainable land use management by minimizing
	Control and Soil	soil erosion and flooding hazards; achieving this through reducing soil
	Conservation (2010)	exposure to rainstorms; reduction of surface run-offs and paved surfaces and
		restoration of degraded land mass.
	Flood Control and Water	This policy is to forecast, prevent, monitor and manage flooding. Optimal
	Conservation (2010)	utilization of floodwater for agricultural and other purposes as well as
		management of flood plains. Abia Riverine Area Management Policy (2010)
		This policy is to minimize riverine erosion and other forms of riverine
		degradation such as riverbank failures, landslides and alluvial deposits.

Table 2.3: Applicable Environmental laws in the Affected States

	Watershed Management	This policy enables the commencement of co-ordinated/holistic/integrated		
	Policy (2010)	management of natural resources: Land, water, vegetation, etc. on a		
		watershed basis to ensure resource conservation through the minimization		
		of land and soil degradation and maintenance of water quality and yield for		
		environmental sustainability.		
	Flood and Erosion	This policy aims at supporting a reliable up-to-date database and integrated		
	Control Management	management system as tools to support all erosion and control programs.		
	Support System (2010)			
	Basic Environmental Law	This law focuses on the regulation and enforcement of Environmental		
	No. 1 of 2004 amended in	Sanitation Practice in the state. It also spells out ASEPA as a parastatal under		
	2013	the office of the governor.		
Imo State	Imo State Environmental	This Law was provided by the state with the main objective of abating		
	Protection Agency Law	environmental pollution across the state. All residents, factories, industries		
		and parastatal are subject to this Law.		
	Imo State Bureau for	This law focuses on the regulation and enforcement of Environmental		
	Sanitation & Transport Law	Sanitation Practice in the state.		
Anambra	Environmental Protection	This Act was provided by the state with the main objective of abating		
State	Agency Act	environmental pollution across the state. All residents, factories, industries		
		and parastatal are subject to this Act.		
	Waste Management	This Acts provides for the effective development and maintenance of		
	Agency Act	sanitation in all areas of the State. The law further provides for proper		
		disposition of excavated silt or earth and other construction materials after		
		any construction project or repair works. Open burning of wastes is prohibited		
		with stipulated penalties.		

2.4 Abia, Anambra and Imo States Affected LGAs Bye Laws on Environment

The project would trigger all the environmental and waste management by laws of all the listed affected LGAs.

2.5 International Conventions and Agreements applicable to the sector

Apart from the National Laws, Acts and Regulations, Nigeria is a signatory or party to many International Environmental Conventions and Treaties that are relevant to the energy sector. A list of some of the relevant International Environmental Conventions and Treaties ratified by the Government of the Federal Republic of Nigeria are presented in Table 2.4.

S/N	Regulations	Year
		Adopted
1	United Nations Framework Convention on Climate Change	1992
	(UNFCCC)	
2	Basel Convention on the Control of Tran boundary Movements	1989
	ofHazardous Wastes and their Disposal	
3	Montreal Protocol on Substance that Deplete the Ozone Layer	1987
4	Vienna Convention on the Ozone Layer	1985
5	Convention on Conservation of Migratory Species of Wild Animals	1979
6	Convention on the Protection of the World Cultural and Natural	1975
	Heritage (world Heritage Convention), Paris	
7	Convention to Regulate international trade in Endangered species	1973
	of Fauna and Flora (CITES)	
8	ILO c155 and R164 2001; Management of workplace Health and	
	Safety and Cntrolling Workplace hazards	
8	Convention on the Conservation of Migratory Species of	1988
	WildAnimals (CMS or Bonn Convention) (Signatory only)	
9	African Convention on the Conservation of Nature and Nature	1968
	Resource	
10	Paris Agreement	2015

Table 2.4: Selected international agreements and conventions to which Nigeria is a signatory

The WHO and FMEnv regulatory standards used to benchmark results obtained for several physicochemical parameters analysed for the baseline are presented in Table 2.5.

Table 2.5: WHO and FMEnv regulatory standards

PHYSIO-CHEMICAL	WHO /FMEnv Limit				
PARAMETERS	SOIL	SURFACE	SEDIMENT	GROUNDWATER	
		WATER			
Colour		20			
Temp (°C)	<40				
pH (H ₂ O) @ 24.8°C	6-9		6.5-9	6.5 – 8.5	
Elect. Cond. (mS/cm)	1000	1,000	35	1,000	
Turbidity (NTU)		5		5	
BOD (mg/L)		2.0			
Total hardness (mg/l)		150		200	
THC (mg/kg)	30				
Total Dissolved Solids (mg/l)		500			
Total Nitrogen (mg/kg)	2-6				
Chloride (mg/kg)	250	250			
Extractable Nitrate (mg/kg)	10	50		50	
Nitrite (mg/l)		0.2			
Ext. Sulphate (mg/kg)	500	100		250	
Magnesium (mg/kg)	50	0.20			
Calcium (mg/kg)	150				
Tatal Chromium (maller)	0.1	0.05			
	0.1	0.00	07.7		
l otal Iron (mg/kg)	1.5		37.7	0.3	
Copper (mg/kg)	0.1	1	0.3	2.0	
Lead (mg/kg)	1.0	0.01	35-170	0.01	
Nickel (mg/kg)	<1				

20	0.01		
6	3		0.005
	0.7		0.7
0.01	0.003	45	
	0.2		
0.03			
0.2	0.2		
5,000			
	6 0.01 0.03 0.2 5,000	6 3 0.7 0.03 0.01 0.003 0.2 0.2 0.2 0.2 5,000 0.2	6 3 0.7 0.01 0.01 0.003 45 0.2 0.3 0.2 0.2 0.2 0.2 0.2 0.2 0.2

FMEnv 1991, WHO 2000

Table 2.6 presents WHO Guidelines for community noise.

Specific Environment	Critical Health Effect(s)	LAeq(dB)	Time	LAmax, fast
			base	(dB)
			(hours)	
Outdoor living area	Serious annoyance, daytime and evening.	55	16	-
	Moderate annoyance, daytime and evening.	50	16	-
Dwelling, indoors	Speech intelligibility and moderate	35	16	
	annoyance at daytime and			45
	evening.	30	8	
Inside bedrooms				
	Sleep disturbance at night.			
Outside bedrooms	Sleep disturbance, window open	45	8	60
	(outdoor values).			

Table 2.6: WHO Guidelines for Community Noise

School classroms and	Speech intelligibility, disturbance	35	During	-
pre-schools, indoors	of information extraction,		class	
	message communication.			
Pre-schools bedrooms,	Sleep disturbance	30	Sleeping	45
indoors			time	
School, playground	Annoyance (external source)	55	During	-
outdoors			play	
Hospitals, wardrooms,	Sleep disturbance at nighttime	30	8	40
indoors				
	Sleep disturbance at daytime and	30	16	
	evenings.			
Hospitals, treatment	Interference with rest and	#1	-	-
rooms, indoors.	recovery.			
Industrial, commercial	Hearing impairment	70	24	110
shopping and traffic				
areas, indoors and				
outdoors.				
Ceremonies, festivals	Hearing impairment (patrons:<5	100	4	110
and entertainment	times/year)			
events.				
Public address, indoors	Hearing impairment	85	1	110
and outdoors				
Music through	Hearing impairment (free-field	85#4	1	110
headphones/earphones	value)			
Impulse sounds from	Hearing impairment (adults)	-	-	140#2
toys, fireworks and	Hearing impairment (children)			120#2
firearms.				
Outdoors in parkland	Disruption of tranquility	#3		
and conservation areas				

#1: As low as possible; #2: Peak sound pressure (not LAmax, fast), measured 100mm from the ear; #3: Existing quiet outdoor areas should be preserved and the ratio of intruding noise to natural background so should be kept low; and #4: Under headphones, adapted to free-field values.

Source: WHO Guidelines for Community Noise, 1999

2.6 The African Development Bank (AfDB)

The E&S safeguards of the AfDB are a cornerstone of the Bank's support for inclusive economic growth and environmental sustainability in Africa. The Bank's IntegratedSafeguard Systems (ISS) is designed to promote the sustainability of project outcomes by protecting the environment, social conditions and people from the potentially adverse impacts of projects.

The ISS consists of four interrelated components as summarized in Figure 2.1

Figure 2.1: Structure of the AfDB ISS

2.6.1 The Integrated Safeguards Policy Statement

This describes common objectives of the Bank's safeguards and lays out policy principles. It is designed to be applied to current and future lending modalities and it considers the various capacities and needs of regional member countries in both the public and private sectors. The Bank's Integrated Safeguards Policy Statement sets out the Bank's own commitments to and responsibilities for delivering the ISS: to ensure the systematic assessment of E&S impacts and risks.

2.6.2 Operational Safeguards (OSs)

These are a set of five safeguard requirements that Bank clients are expected to meet when addressing social and environmental impacts and risks. Bank staff use due diligence, review, and supervision to ensure that, clients comply with these requirements during project preparation and implementation. Over time the Bank may adopt additional safeguard requirements or update existing requirements to enhance effectiveness, respond to changing needs, and reflect evolving best practices. The five OSs are presented in Table 2.7. The OSs are intended to:

- Better integrate considerations of E&S impacts into Bank operations to promote sustainability and long-term development in Africa;
- Prevent projects from adversely affecting the environment and local communities or, where prevention is not possible, minimize, mitigate and/or compensate for adverse effects and maximize development benefits;
- Systematically consider the impact of climate change on the sustainability of investment projects and the contribution of projects to global greenhouse gas emissions;
- Delineate the roles and responsibilities of the Bank and its borrowers or clients in implementing projects, achieving sustainable outcomes, and promoting local participation; and
- Assist regional member countries and borrowers/clients in strengthening their own safeguards systems and their capacity to manage E&S risks.

Operational	Description	Triggered/Not
Safeguards		Triggered
OS. 1:	This overarching safeguard governs the process of determining	Triggered
Environmentaland social	aproject's environmental and social category and the resulting	
assessment		
OS. 2:	This safeguard consolidates the policy commitments and	Triggered
InvoluntaryResettlement:	requirements set out in the Bank's policy on involuntary resettlement	
Land Acquisition,	and incorporates a few refinements designed to improve the	
Population Displacement	operational effectiveness of those requirements	
and compensation		

Table 2.7: AfDB Operational Safeguards OS1-5

OS. 3: Biodiversity and	This safeguard aims to conserve biological diversity and promote the	Triggered	
Ecosystem Services	sustainable use of natural resources. It also translates the		
	commitmentsin the Bank's policy on integrated water resources		
	management into operational requirements.		
OS. 4: Pollution	This safeguard covers the range of key impacts of pollution,	Triggered	
Prevention and Control,	wasteand hazardous materials for which there are agreed		
Greenhouse Gases,	international conventions, as well as comprehensive industry-specific		
Hazardous Materials,	and regional standards, including greenhouse gas accounting, that		
Resource Efficiency	other multilateral development banks follow.		
OS. 5: Labour	This safeguard establishes the Bank's requirements for its borrower's	Triggered	
Conditions; Health and	orclients concerning workers' conditions, rights and protection from		
Safety	abuse or exploitation. It also ensures greater harmonization with most		
	other multilateral development banks		

2.6.3 Environmental and Social Assessment Procedures (ESAPs)

The Bank's ESAPs details the specific procedures that the Bank and its borrowers or clients should follow to ensure that Bank operations meet the requirements of the operational safeguards (OSs) at each stage of the Bank's project cycle. Its adoption and implementation enhance the E&S performance of the Bank's operations and improve project outcomes. The ESAPs will help to improve decision-making and project results by ensuring that Bank-financed operations conform to the requirements laid out in the operational safeguards (OS) and are thus sustainable.

2.6.4 E&S Assessment of Nigerian Policies and Legislations and AfDB Safeguard Systems

The Nigerian E&S Safeguards system addresses most of the key elements of E&S Safeguards for projects involving multiple subprojects, and the required differentiated treatment of vulnerable groups which are adequately addressed by the AfDB safeguard systems. Apart from the gaps highlighted above, the main challenge facing E&S safeguarding in Nigeria is the overlapping functions of different agencies in relation to enforcement of these policies, guidelines, regulations and legislative provisions.

To ensure E&S safeguard during project implementation, both the Nigerian and AfDB E&S safeguard systems will be implemented. However, in the event of divergence and gaps between the two regulations the AfDB safeguard system with the more stringent requirement will take precedence (See Table 2.8).

Key Element	Nigerian Provisions	AfDBIntegrated	Provision to be adopted
		Safeguard System	by NTEP 1 Program
ESMF for Projects	Not a national Requirement	OS1: Environmental	OS 1: Environmental
Involving multiple		and social assessment	and social assessment
Sub-projects.			
Screening	EIA Act Cap E12 LFN	OS1: Environmental	OS1: Environmental
	2004	and social assessment	and social assessment
Scoping	EIA Act Cap E12 LFN	OS1: Environmental	EIA Act Cap E12 LFN
	2004	and social assessment	2004
Environmental and	EIA	IESIA Guidance Notes	IEIA Sectoral Guidelines
Social Impact	Procedural	ESAP	for Power Sector, 2013
Assessment	Guidelines, 1995 EIA		and ESIA
Guidelines	Sectoral Guidelines		Guidance Notes ESAP
	for Power Sector, 2013		
Environmental	EIA Procedural Guidelines,	OS 1 – Categories 1, 2,	OS 1 – Categories 1, 2,
Categorization	1995 Categories I, II & III	3, and FI for operations	3, and FI for operations
		Involving lending to	Involving lending to
		Financial	Financial intermediaries.
		intermediaries.	
Environmental and	EIA Act Cap E12 LFN	OS1: Environmental	OS1: Environmental
Social Assessment	004	and social assessment	and social assessment
Environmental and	EIA Act Cap E12 LFN	OS1: Environmental	OS1: Environmental
Social Management	2004	and social assessment	and social assessment
Plan			

 Table 2.8: Benchmarking of Nigerian Legal Provisions and AfDB ISS specifications

Consultation and	EIA Act Cap E12 LFN	OS1 (include	OS 1 (include provision
Participation	2004	provision of IESIA	of IESIA Guidance Notes
		Guidance Notes on	on consultation)
		consultation)	
Involuntary	-Land Use Act CAP L5	OS 2: Involuntary	OS 2: Involuntary
Resettlement	LFN 2004-Acquisition of	Resettlement: Land	Resettlement: Land
	Land Access Rights for	Acquisition, Population	Acquisition, Population
	Electricity Projects	Displacement and	Displacement and
	Regulations, 2012	Compensation	Compensation
Compensation	Cash compensation	OS 2: Affected Persons	OS 2: Affected Persons
	Is generally made based	are compensated for all	are compensated for
	Upon Market value. Whilst	their losses at full	all their losses at full
	in principle there is	replacement cost. They	replacement cost. They
	allowance for in-kind	can be offereda range	can be offered arange of
	Compensation or	of different	different compensation
	Replacement of assets,	compensation	packages, resettlement
	Cash compensation is	packages, resettlement	assistance & livelihood
	common practice	assistance & livelihood	improvement options.
		improvement options.	
Pollution Prevention	National Environmental	Operational safeguard	Operational safeguard
And Control	Protection (Pollution	4–Pollution prevention	4 – Pollution prevention
	Abatement in Industries	And control of,	and control, hazardous
	And Facilities Generating	hazardous	materials and resource
	Wastes) Regulations,1991;	Materials and resource	efficiency
	And National	efficiency	
	Environmental		
	(Surface & Groundwater		
	Quality Control)		
	Regulations 2011		

Greenhouse Gases	National Environmental	Operational safeguard	Operational safeguard	
	Protection (Pollution	4–Pollution Prevention	4 – Pollution prevention	
	Abatement in Industries	and control, hazardous	and control, hazardous	
	and Facilities Generating	Materials and resource	materials and resource	
	Wastes) Regulations, 1991	Efficiency (Special	efficiency (Special	
		screening for GHGs is	screening for GHGs is	
		also considered under	also considered under OS	
		OS 1)	1)	
Waste and	- National Environmental	Operational safeguard	Operational safeguard	
Hazardous	Protection (Management	4 –Pollution prevention	4 – Pollution prevention	
Materials	Of Solidand Hazardous	and control, hazardous	and control, hazardous	
	Wastes) Regulations, 1991	materials and resource	materials and resource	
	-Harmful Wastes (Special	efficiency	efficiency	
	Criminal Provisions etc.)			
	Act CAP HI LFN 2004			
Resources and	Natural Resources	Operational safeguard	Operational safeguard	
Conservation	Conservation Act CAP	3:	3: Biodiversity and	
	349 LFN 1990	Biodiversity and	Ecosystem Services	
		Ecosystem Services		
Labour Conditions	Employee Compensation	Operational safeguard	Employee Compensation	
	Act,2010 Labour Act, 1990	5 – Labour conditions,	Act,2010 Labour Act,	
		health and safety	1990	
Health and Safety	Factories Act (CAP F1),	Operational safeguard	Operational safeguard	
	2004	5– Labour conditions,	5 – Labour conditions,	
		healthand safety	health and safety	

Natural Habitat	Forestry Law CAP 51 LFN	Operational safeguard	Operational safeguard
and Biodiversity	1994 Endangered Species	3:	3: Biodiversity and
	(Control of International	Biodiversity and	Ecosystem Services
	Trade and Traffic) Act.No.	Ecosystem Services	
	11 of 1985. Natural		
	Resources Conservation		
	Act CAP 349 LFN 1990		
Gender	National Gender Policy	Special consideration	There is the need forthe
	2010	is given to the needs	project consider the
		and rights of women.	implications of the AfDB
		In the context of	Gender Marker System
		Gender vulnerability,	and how to design and
		The client must	implement an appropriate
		consider the social	Gender Action Plan for the
		and political constraints	sub projects
		and barriers that	
		women may face.	
Vulnerable Groups	Some Nigerian policies	OS 1: Environmental	OS 1: Environmental
	address the needs of	and social assessment.	and social assessment.
	vulnerable people, such	Special attention is	Special attention is
	as the Gender Policy,	given to vulnerable	given to vulnerable
	Child Actor NEEDs	groups.	groups.
	framework. However,		
	there are no specific		
	provisions related to E&S		
	Assessment		
Differentiated	No provisions	Provision for	(Provision for
Measures for		differentiated	differentiated
Vulnerable Group		measures for inclusion	measures for inclusion)
Environmental	EIA Act Cap E12 LFN	ESAP	ESAP

Monitoring	2004		
Disclosure and	EIA Act Cap E12 LFN	OS 1: Environmental	OS1: Environmental
Access to	2004	and social assessment	and social assessment
Information			

2.7 TCN's HSEQ Policy

TCN has a comprehensive Health, Safety and Environment policy prepared and used by PMU (World bank project) the past 12 years which are usually given to TCN EPC Contractors and all parties involved in construction activities /works of 33/132/33kV sub-stations and 330kV and 132kV transmission lines. The EPC contractor shall be required to submit his HSE Policy alongside his bidding document and the TCN HSE Policy shall be handed also over to the EPC along with the project ESMP a Month after the kick off meeting at the project sites.All parties that will be involved in this project must comply with the HSEQ Policy of TCN. The SHE&S Philosophy is anchored on:

- Safety First
- Management of workplace health and Safety and Management of workplace Hazards (ILO C155 and R164)
- Nobody Gets Hurt during project planning and execution.
- Safety and security are the project's highest priorities.
- Any work performed at a facility must be done in the safest manner possible.
- Safety is an integrated part of SHE&S policies, procedures and requirements and those are required to safely operate and maintain operating facilities.
- Safety is everybody's concern and responsibility.

The Construction SHE&S Management System is to be established prior to construction based on the above philosophy and the requirements of following at minimum:

- OHSAS18001:2018 Occupational Health and Safety Management Systems Requirements;
- ISO9004:2018 Quality management systems: Requirements
- ISO14001:2015 Environmental management systems: Requirements with guidance for use;
- Local Norms, Rules and Regulations for Health, Safety and Environmental Protection;
- Workmen's Compensation Decree/1987;

• Electrical Regulations1988.

2.8 Institutional and Administrative Framework

TCN AfDB PIU shall be responsible for implementation of ESMP of this ESIA in liaison with other relavant stakeholders which shall be directed by the Financier (AfDB) through TCN. These include the following:

2.8.1 The Federal Government of Nigeria

Section 20 of the constitution of Nigeria makes it an objective of the Nigerian State to improve and protect the air, land, water, forest and wildlife of Nigeria. Sections 33 and 34 which guarantee fundamental human rights to life and human dignity, respectively, can also be linked to the need for a healthy and safe environment to give these rights effect. The executive council of the federation approves all national policies including the National Policy on Environment.

2.8.2 Federal Ministry of Environment

The Federal Ministry of Environment is responsible for implementation of the overall environmental policy of the Country. It has the responsibility for verification of the project sites during this study. The Ministry will be responsible for review and disclosure of this ESIA report and its implementation through panel review with experts, issuance of approval to next phase of project implementation, Monitoring the Impact mitigation processes during ESMP implementation by the EPC Contractor and finally certification at the end of the project cycle. The Ministry will also be responsible for Environmental Audit monitoring review and compliance enforcement, along with waste management in the operation phase and in the decommissioning phase. They will enforce waste Management in line with all the laid down Regulations and guidelines of Conventions to which each identified waste shall belong, e.g. Basel, Stockolm, and Montreal protocols, climate change, etc, as it relates to transmission lines and their associated sub stations.

2.8.3 Transmission Company of Nigeria

Transmission Company of Nigeria (TCN) manages the electricity transmission network in the country. TCN's licensed activities include electricity transmission, system operation and electricity trading. It is responsible for evacuating electric power generated by the electricity generating companies (GenCos) and

wheeling it to distribution companies (DisCos). It provides the vital transmission infrastructure between the GenCos and the DisCos' Feeder Substations.

2.8.4 Project Implementation Unit

This is a unit established by TCN with responsibility for the end to end delivery of all AfDB funded projects, including planning, ESIA/ESMP, feasibility and RAP, engineering, procurement of EPC contractor, supervision of the construction by (EPC). PIU is headed by a substantive Project Manager. Furthermore, the PIU shall ensure:

- The ESIA and RAP studies are conducted in line with legal requirements as well as requirements of the lender;
- Proper implementation of the ESMP;
- Supervise the EPC contractor during the implementation of ESMP in the construction stage conjunction with the Owner Engineers in Project Department to ensure implementation of management measures;
- Provision of information on activities and consultations with the PAPs;
- Maintain an inventory of the assets to be resettled and a detailed valuation of the compensations;
- Ensure proper information and participation of PAPs and affected communities;
- Management of compensation payments;
- Monitoring the resettlement work;
- Implementation of community-approved projects financed through the EPC contractors; and
- Production of monitoring reports on ESMP and Health and Safety implementationscompliance all through the project cycle either Monthly or quarterly or as often as the reports are required from either the Bank or Regulators.

2.8.5 Electricity Distribution Companies (Port Harcourt)

There are two electricity distribution companies in this project area which are part of 18 distribution companies unbundled from defunct PHCN during electricity reform in 2005. They are responsible for distributing electricity to homes and other consumers within the Alaoji - Onitsha distribution zones. This role makes them the direct customers of TCN and a major stakeholder in ensuring improved electricity supply to consumers and realizing other objectives of this project.

2.8.6 Imo State Ministry of Petroleum and Environment (ISMPEnv.)

The Imo State ministry of petroleum and environment is charged with the obligation of developing and implementing environmental policies, formulating, enforcing programs and legislation, environmental protection and control, environmental technology including efficient implementation of research and development.

2.8.7 Abia State Ministry of Physical Planning and Urban Development (renewal) (AbSMPPUD)

The Bureau's core mandate is to strengthen land administration, acquire, prepare, allocate and register all land transactions as well as the physical planning of non-urban centres in the state. The Bureau Abia state Ministry of Physical Planning and Urban Development (renewal) (AbSMPPUD) has is an agency under the ministry's supervision.

The functions of the Agency include

- Land acquisition
- Compensation
- Land allocation
- Processing of Certificates of Occupancy for production and collection
- Registration of land transaction
- Change of land use purpose
- Merger of land titles
- Renewal of land ownership (Re-grant)
- Conversion of land titles
- Non-urban services (planning recommendation, building plan approval)
- Geographical information services
- Project management of metropolitan and other Urban Roads

2.8.8 Anambra State Environmental Protection Agency (AnSEPA)/ Imo State Environmental Protection Agency (ISEPA)/ Abia State Environmental Protection Agency (ASEPA)

The agencies are responsible for preparing and updating periodic master plans for the development of environmental science and technology and advise the government of the financial and material requirement

for the implementation of such plans; to establish a mechanism to predict ecological disasters; identify the problems of drainage and sewage systems and carry out measures to improve, protect and remedy their ecosystems .Also protection and development of the environment, and also ensuring a healthy environment.

2.8.9 Abia State Ministry of Transport (ASMT)/ Anambra State Ministry of Transport (AnSMT)

The major roles of the ministry are;

- To formulate and implement effective policies in respect to road transportation to ensure that adequate road safety measures are put in place across the state.
- To co-ordinate the creation of motor parks, identification and development of railways and river transportation.
- To ensure effective and efficient movement of goods and services that will enhance socio-economic growth throughout the states.

2.8.10 Abia State Ministry of Environment (ASMEnv)

Abia State Ministry of Environment is charged with the obligation of developing and implementing environmental policies, programs and legislation, environmental protection and control, environmental technology including efficient implementation of research and development. In this project what is their functions. We are working with FMEnv. not soley the state. The FMEnv brings in people from the state in the area of waste management and pollution control.

2.8.11 Anambra State Ministry of Environment (AnSMEnv)

Anambra state ministry of environment is charged with the responsibility of formulating, enforcing, coordinating policies, statutory rules and regulation on solid waste collection, disposal, general environmental protection and flood control in the state. To also ensure the attainment if a clean, beautiful and sustainable environment across the state through the application of the best practices in the management of the environment, to initiate, implement and monitor all issues relating to climate change in order to mitigate the negative impact of climate.

2.8.12 Abia State Ministry of Women Affairs (ASMWA)/ Imo State Ministry of Health, Women Affairs and Social Development (ISMHWASD)

The responsibilities of the Ministries in both states are majorly to facilitate efforts in providing micro credits to the indigent women from donor agencies (UNICEF, UNFPA) strengthen the capacity of caregivers, OVC, NCOS, and CSO sensitize Abia women on the issues of child rights, HIV/AIDS, harmful traditional practices initiate programs that promote the economic empowerment of women provide decent health care delivery, in reducing maternal mortality and morbidity by collaborating with the ministry of health and also strengthen the child's parliament through seminars exchange programmes, debates, radio/TV shows.

2.8.13 Anambra state Ministry of Lands, Survey and Town planning (AnSMLST)/ Imo State Ministry of Land Survey Housing and Urban Planning (ISMLSHUP)

The Ministry of these states is vested with the authority of land administration. They are also charged with the survey of state lands, determination of land use and control, compensations, housing policies and urban development. The ministry is also responsible for issuance of the gazzetted right of way (ROW) of the proposed transmission Quad line.

The respective states Environmental Protection agencies are responsible for ensuring the safeguarding the environmental resources of the respective states for achieved sustainability. They liaise with the country's supervisory ministry on issues concerning environmental protection. This should be so stated to justify the inclusion of the state ministries and agencies under the regulatory framework of the report

2.8.14 Local Government Areas (LGAs)

The project will pass through sixteen LGAs, four in Abia State – Osisioma, Aba North, Aba South, Ugwunagbobo, four in Anambra state- Ekwusigo, Idemili south, Ihiala, Ogbaru and eight in Imo state- Owerri municipal, Mbatoli, Ngor–Okpala, Owerri-north, Owerri-west, Oru-east, Oru- west, Njaba. These LGAs are involved in the ESIA approval process. According to the EIA act, the LGAs will have representatives in the panel that will review the report and advise the Minister to make decisions on the project. The LGAs also have roles in the administration of lands in rural areas and hence, will be involved in the resettlement process.

2.8.15 The Customary District Councils

The line route will pass through the Chiefdoms as several villages under them. The Igwe's (traditional head of chiefdom) have important role to play in the project with respect to mobilization of the community members to support the project, grievance redress, peace and security of personnel, equipment and facilities to be installed. Close contact and regular consultation shall be maintained with customary chiefs throughout the life of the project.

2.9 ESIA Terms of Reference

In line with the Nigeria's EIA procedural guidelines (FEPA, 1995), a Terms of Reference (ToR) for the ESIA of the proposed project was developed, for the FMEnv's approval, at the early stages of the study based on an initial assessment of the environmental issues relating to the proposed project. The ToR was approved by FMEnv and a one season waver for field data gathering exercise was issued for the project. The specific objectives of the ToR were to:

- Define the relevant framework of legal and administrative requirements for EIA of the proposed project;
- Outline the general scope of the ESIA study including the overall data requirements on the proposed project and affected environment; and
- Define the procedures and protocols for identification and assessment of associated and potential impacts and for selecting appropriate prevention, reduction, and control as well as enhancement measures for such impacts; and eventually developing an effective Environmental and Social Management Plan (ESMP) for the project. The ToR has been approved by the FMEnv.

CHAPTER THREE PROJECT JUSTIFICATION AND ALTERNATIVES

3.0 Introduction

This chapter discusses the justification for the project and as well as description of all alternatives considered to ensure that the least environmentally and socially damaging alternative was selected.

3.1 **Project Justification**

Need for the Project

Although the **transmission capacity** in Nigeria is amounting to 10,000MW, transmission lines have reached their maximum capacity, the grid is therefore constrained in several areas, and power is not availed to consumers at all time. The suppressed demand is extremely large (estimated to over 10,000 MW). Consequently, the average annual electricity consumption per capita of Nigeria (144.5kWh) is one of the lowest on the continent (480.3kWh for Sub-Sahara Africa and 2,059.1kWh for middle-income countries).

The absence of reliable supply of electricity negatively affects Nigeria's economy. Due to significant shortage of power supply capacity compared to demand, load allocation has been implemented nationwide in Nigeria. Businesses experience an average of 239 hours of power outages per month while more than 60% of the population does not have access to electricity. As a result, a very large number of residential consumers, businesses and industries rely on expensive diesel and petrol generators. Self-generation of electricity is estimated at a minimum of 6,000 MW, almost equivalent of the available generation capacity on the grid. The use of diesel and petrol generators contributes significantly to air and noise pollution, which negatively impacts the quality of life of the people of Nigeria – especially those of women and young girls. Energy poverty disproportionately affects women because they are primarily responsible for energy generation and use in homes (cooking, heating and lighting).

Nigeria's transmission system managed to evacuate a record. Nigeria's transmission system, which is operating well below international reliability and security standards, only managed to evaluate a record 5,074 MW on February 2, 2016. Fichtner's (2017) Transmission Expansion Plan for Nigeria puts the net balance between power generation and transmission at 5,900MW as at December 2015. Planned power generation investments by gas, hydro, photovoltaic and wind fired powered stations would further provide more available energy requiring transmission.

There is therefore an urgent need to increase transmission capacity to sustain economic development in the country because there is a strong correlation between improved power availability and economic development.

3.2 Benefits of the Project

Energy is the raw material needed to fuel any country's economy growth. The benefits of this project for the people of Abia, Anambra and Imo Statesin particular, and the economy of Nigeria in general are numerous. The following few are worth mentioning;

- Improved and more reliable electric power supply.
 - Improvement of the wheeling capacity and stabilized the grid connection
 - Enhances productivity and efficiency in both public and private organizations
 - It helps to develop and promote small, medium, and large-scale enterprises thereby creating direct and indirect employment opportunities.
 - It helps to improve the security of lives and properties.
 - General contribution to climate change through overall reduction of the used of personal power generating sets. Reduction in green house gases from generating sets that eventually impact negatively on the climate and the consequent climate changes
 - General improvement of the standard of living for the populace.
 - Improve the revenue base of the country by increasing the economic activities that have access to electricity

3.3 Envisaged sustainability

The general sustainability principles (technical, economic, environmental and social) that guided the design of the project are set out below.

3.3.1 Technical Sustainability

The proposed project is technically feasiblebecause, it is professionally designed, and the technology employed is readily available. The proposed route selection has also considered the accessibility for maintenance works after commissioning. Demand for power to drive industrial, and residential concerns has also been established in the Fichtner (2017) Transmission Expansion Plan.

3.3.2 Economic Sustainability

There is a huge power demand in Nigeria as exemplified in Figure 3.1 below which shows an exponential growth in demand.

Source: Fitchner (2017)

Figure 3.1: National Demand Forecast of Nigeria

In the short term, the project will be funded by debt from development finance institutions. However, in the medium to long term after operation, the return on investment would be guaranteed assuring loan repayment promptly. The availability of skilled and unskilled labor force in the project area, functional TCN organizational structure, presence of up takers and deployment of good industrial best practices in construction technology is expected to make the project economical sustainable.

3.3.3 Environmental Sustainability

The line routes and the substation sites have been carefully selected by considering sensitive ecosystems and to avoid built-up areas as much as possible. In addition, practical mitigation measures have been proffered for the identified environmental impacts of the Existing Alaoji – Onitsha Transmission line project and TCN is fully committed to comply with the relevant applicable national environmental laws, applicable international conventions and AfDB environmental and social safeguard requirements. Furthermore, TCN is also committed to implementing the ESMP developed to further guarantee the environmental sustainability. TCN has full department that handles environmental matters. The HSE department is headed by an Assistant General Manager who reports directly to the Managing Director. Significant number of ESIAs and

environmental audits studies has been conducted in the past by TCN. Hence, they have the technical skills needed to manage the mitigations that are determined for the identified impacts of this project.

The implenetation of the findings and recommendations of the ESIA in the project design such as redesigning to accommodate identified impacts on the ROW among others shall ensure the environmental sustainability of the project. The application of standard industrial practice during construction and implementation of the project shall also ensure the environmental sustainability of the project. The implementation of the stand alone ESMP shallensure continuous safeguarding of the Environmental and Social components for ensured sustainability in line with the Bank's policy.

3.3.4 Social Sustainability

The project has secured the buy-in of the people due to their quest for electricity availability for socioeconomic activities. One of the benefits of this project is enhance the socioeconomic activities of these peopland also to create job opportunities for unemployed indigenes. Therebyand this would enhance the socio-economic activities of the communities thereby supporting the sustainability. In addition, TCN is committed to effective and continuous stakeholders' engagements and consultations and effective implementation of the Resettlement Action Plan (RAP).

TCN is committed to comply with applicable national social laws, relevant international conventions and AfDB safeguard requirements. While AfDB is also committed to training and re training of the PIU team members on environmental and social management risks.

The continuous implementation of the Bank's Environmental and Social safeguards policies throughout the various phases of th project shall also ensure the social sustainability of the project.

3.4 **Project Alternatives**

This project alternative supposed to be a chapter on it own. Please remove it from justification.

3.4.1 'Do-Nothing' Option

The first project option considered was the 'do-nothing' option. This option would result in the continuation of the shortage of electricity supply, which has also been inefficient, inadequate, and unreliable. The use of domestic and industrial generators to power homes, offices and industries will escalate. And this will result in increased gaseous emissions with its associated health effects as well as increased greenhouse gas effects. Furthermore, economic growth will be stifled. Therefore, this option was **rejected**.

3.4.2 Delayed Project Option

This would arise if a situation of civil unrest or public opinion is against the development, or the socioeconomic and cultural impacts of the project are not favorable, given available mitigation options. This would mean that all planning and development activities would be stalled until conditions are more favorable. This option would therefore delay access to more reliable electricity and slow down investments in generation plants, since power evacuation is delayed. The use of domestic and industrial generators to power homes, offices and industries will also be prolonged. This will result in increased gaseous emissions resulting in the increase in green house gas which enhances global warming effect that leads to Climate change effects; therefore, this option was **rejected**.

3.4.3 Project Implementation Option

The third option considered was the execution of the proposed project as planned. This option was accepted because it will de-bottleneck the grid around the largest demand center of Abia, Anambra and Imo States, provide a more secure and reliable energy supply with all the benefits listed under Section 3.2.

3.5 Analysis of Alternatives

3.5.1 Design/ Technology Alternatives

Several design alternatives were considered including:

- Overhead versus Underground Transmission
- Conductor type
- Tower type

3.5.1.1 Overhead versus Underground Transmission Line Cables

Electrical power is transmitted through either overhead power lines or underground cables. Each of the two types of cables has its benefits as well as pitfalls as well as places where it is commonly used. The choice of which method to use is influenced by voltage, cost, safety, type of application, and other factors. Table 3.1 presents a comparative evaluation of both system types.

Design	Alternatives	Preferred	Justification	
Consideration	Considered	Alternative		
Transmission	Overhead	Overhead	Overhead transmission lines possess the following comparative	
line design			advantages over underground	
			 Increased life expectancy, 	
			 Enables fault detection and repair, 	
			 Higher voltage carrying capacity, 	
			 Accommodate large size of conductors, 	
			 heat dissipation, 	
			• Easier and less expensive to install and construct in installation and	
			construction,	
	Underground	-	This TL design type is associated with issues related to public	
			safety; effect of lightening discharge, interference, voltage	
			drop, environmental impact, high installation cost, and land use	
			can be effectively mitigated. Underground TL has lesser	
			comparative qualities to overhead lines in following areas;	
			 Lower life expectancy, 	
			 Doesn't fault detection and repair, 	
			 Lower voltage carrying capacity, 	
			 Lesser conductor sizes, 	
			 Lower heat dissipation, 	
			 Ease in installation and construction, 	
	Tubular		Has a diagonal shape	
			Very convenience	
			A bit costlier than the lattice	
			Varies in height between 10m-100m	

Table 3.1: Overhead Versus Underground Transmission Line Cables

The choice of towers type is dependent on the
electrical clearance and SAGs

3.5.2 Foundation Alternative

The various alternatives considered for the Foundation are outlined in Table 3.2.

Design	Alternatives	Preferred	Justification
Consideration	Considered	Alternative	
Foundation Type	Concrete	Concrete	• It is durable, less expensive, accommodates variety of soils,
	spread footing	spread	accommodates both light and heavy towers,
	Raft	footing	• It is durable, less expensive than the other two options, accommodates
	Foundation		only poor soils and light towers
	Pile		• It is durable, less expensive, best for only swampy soils, accommodates
	Foundation		both light and heavy towers

Table 3.2: Foundation Alternatives

3.5.3 Conductors Alternatives

Conductor type and number of circuits alternatives considered for this project are presented in Table 3.3.

Table 5.5: Conductor Type Alternative	Table 3.3:	Conductor	Туре	Alternative
---------------------------------------	------------	-----------	------	-------------

Design	Alternatives	Preferred	Justification
Consideration	Considered	Alternative	
	Gap-type ZT-aluminum		 Long life span, corrosion resistant, very high current capacity and
	conductor steel	Gap-type ZT-	conductivity, low sagging at high temperature, High thermal
	reinforced (GZTACSR)	aluminum	resisting properties
	Aluminum Conductor	conductor	 Long life span, poor corrosion resistant, high current capacity and
Conductor type	Steel Reinforced	steel	conductivity, low sagging at high temperature, High thermal
	(ACSR)	reinforced	resisting properties
	All Aluminum	(GZTACSR)	 Short life span, corrosion resistant, high current capacity and
	Conductor (AAC)		conductivity, High sagging at high temperature, low thermal

	resisting properties

3.5.4 Number of Circuits Alternatives

Table 3.4 presents the alternatives of using the single-, double-, or multi-circuit transmission lines for the proposed project.

Table 3.4: Number of Circuits Alternatives

Design	Alternatives Considered	Preferred Alternative	Justification
Consideration			
Number of	Single circuit conductors	Double circuit conductors	 higher E & S footprint and
conductors			 low voltage carrying capacity and
			 Low construction and maintenance cost
			 Absence of EMF coupling effect
	Multi-Circuit conductors		 high capital outlay for construction and
			maintenance cost
			 High voltage carrying capacity
			 Presence of EMF coupling effect
			 Reduced E&S footprint,
	Double circuit conductors		 High voltage carrying capacity
			 Moderate construction and maintenance cost
			 Reduced E&S footprint,
			 Presence of EMF coupling effect

3.5.5 Towers Types (Tubular / Lattice) Alternatives

Two basic tower types were considered the tubular and the lattice steel tower. The choice of tower type was based on considerations of Design, Detailing, Tower cost, transportation and erection as shown in Table 3.5.

Table 3.5: Tower Type Alternatives

Design	Alternatives	Preferred	Justification
Consideration	Considered	Alternative	
Tower type	Lattice	Lattice and	• Can be easily adjusted to accommodate several electric
		Tubular tower	circuits and various conductor types
			 Less expensive and easy to fabricate
			 Can be easily bundled and transported
			 Extremely flexible on site
	Tubular		• Can be used in areas with reduced RoW due to encroachment
			• Can be adopted in areas with huge social concerns like Aba
			and Onitsha
			 It is more difficult to transport
			• It is more expensive than the lattice. (\$1,160-\$1,500/Ton as at
			September, 2019 source: online -Google)
			 It has height ranges fro 10m-100m
			• It is mostly used when there is contention with the electrical
			clearance and SAG

CHAPTER FOUR PROJECT DESCRIPTION

4.1 Introduction

The proposed Alaoji - Onitsha Transmission Project is aimed at strengthening the national grid around the country for a more reliable electricity supply. The project involves the reconstruction of the existing line and upgrading it to a double circuit Quad Conductor of 330kV type with a total length of about 138 km, between the existing TCN substation at Alaoji (in Abia State), Ihiala (in Anambra State) and Onitsha (in Anambra State).

4.2 Project Locations

The States where the project traverses are presented in the Figure 4.1.

Figure 4.1: Project Location Map

Table 4.1 lists the State and Local Government Areas traversed by the transmission line, while Figure 4.1 outlines the administrative locations of the component parts of the project.

State	Local	Communities		
	Government			
	Osisioma Ngwa	Umuode, Umuocham, Abayi, Umuozuo, Osia Umu Mgbede, Ama Okpu, Umu		
		Ojima Ogbu, Umuobo, Umumba, Umu Akpara, Umuabai, Okpuala, Mbuntu,		
Abia		Mboko Umuete, Ihie, Ama Apu Ife, Aga		
Abia	Aba South	Umu Mba, Ohabiam, Asia Nnentu, Ariaria, Aba		
	Ugwunagbobo	Asia Umu Nka, Asia Amanhie, Umuodo, Umugo, Ala Oji		
	Ukwa West	Umulku Uko and Obokwea		
Anambra	Idemili South	Obosi, Umuoja, Obosi, Oba Aboji, Oba		
	Ogbaru	River Idemili, Eruna Lagbe, Atani, Eze,		
	Ihiala	Uli, Ihiala, Azira, Awgbu		
	Ekwusigo	Ozubulu, Orifite, Ihembosi, UruoboOkija, Omai, Isieke		
Imo	Owerri	Owerri, Nwaorie, Owerri Division,		
	Municipal			
	Mbatoli	Umunoha, Orodo, Ohoba, Nkwesi, Mbieri, Awo, Akabo, Obaku,		
	Ngor-Okpala	Umu Echem, Amala, Upe, Umuowa, Umuonhie, UmuNeke, Umukabia,		
		UmuEwere, Obokwe, Obeki, Nguru, Ngor, Eziama, Egbelu, Amaibo, Alulu,		
		UmuOye, UmuOgii, Ochicha, Elelem, Amafor		
	Njaba	Umuaka, Amiri,		
	Owerri west	Orogwe, Ubomiri, Irete, Awoldemiri, Umu Oma, Okuku, Obokwe, Obinze,		
		Nekede, Ihiagwa, Eziobo,		
	Oru East	Awomama		
	Owerri North	Umunahu, Owelu, Orji, Oratta, Olakwo, Naze, Ihite, Emii, Emekukwu,		
		Emekeobibi, Egbu, Awaka, Akalovo, Abala, Obeke, Amorie		
	Oru West	Nempe, Oteru, Mbidilbi,		

Table 4.1: Administrative units	traversed by the Alac	oji - Onitsha TL
		·

4.3 Design objectives

The proposed transmission line to their associated terminal substations at both ends are ultimately intended to cater for the surrounding industrial and residential growth within the Project Areas. Design objectives include:

- accommodating for expansion due to future load growth and planned distribution additions,
- providing a safe, efficient and reliable supply of electricity in an economically, socially and environmentally sound manner.
- maintaining a safe operating environment
- keeping any disturbance footprint to the minimum size required
- strategically placing the proposed transmission line footprints and future ROWs within previously disturbed and relatively level areas as much as practical to reduce vegetation clearing, soil and site hydrology disturbance
- providing options for vegetation offsets and re-vegetation works
- adopting environmentally sensitive design features to reduce the clearing of canopy trees within RoWs, where practical
- adopting alternative clearing profiles (e.g. scalloped) when crossing sensitive vegetated areas
- providing a service life of 50+ years that can be extended by refurbishment programs so long as the need for the facilities continues

4.4 Project Scope

The reconstruction of the approximately 138km 330kV SCAlaoji –Onitsha transmission line will involve:

- Decommissioning phase. This phase includes widening of access roads, unstringing of the existing lines, dismantling of existing towers and tower foundation
- Planning and design phase. This phase includes preparation of relevant planning documentation, technical and design documentation and analysis of the environment aspects. The planning documentation will be prepared in accordance with the requirements of the current Nigerian and international legislation for this type of facilities
- Construction of overhead transmission line towers, their foundations and line stringing. The type and size of a tower foundation is determined by soil details obtained from geotechnical investigations and prior experience. Provision for horizontal shear forces at the ground line shall be factored into all

foundation designs. All typical OHL consists of tower body, earth wire peaks and crossarms as components. They served to bear the conductor forces and outward loads. The transmission line is going to be a 330 kV two to four circuit TL. Each pair of circuits comprises of composite conductors.

4.5 General Layout of the TL

The transmission line as well as the all the communities/LGA it cuts across are shown in Figure 4.2.

Figure 4.2: Map of Project Area Showing Affected Communities and LGAs

4.6 Land Take

The Transmission Line Right of Wayfor the project is approximately 138km in length and 50m wide, thereby giving a total area of about 1,083,990 m².

4.7 Safety Criteria

The design of the TL system (routes and layouts) have been carried out taking into consideration corporate safety rules to assure safety, prevent accidents and reduce risks level to as low as practicable. Further safety and operability studies would be carried out on final transmission route, tower foundations and general technical drawings to verify safety systems and integrity of installations to possible changes in environmental conditions.

4.8 Design Conditions

The Environmental, as well as the actual design conditions, considered for the proposed transmission line, substations and ancillary facilities are presented in Table 4.2.

Environmental Conditions	
Altitude	
Climate	Mangroove forest and swamp
	forest zones environment
Maximum Ambient Temperature	28°C
Minimum Ambient Temperature	25°C
Mean Annual Rainfall	161 mm
Relative Humidity (Maximum)	75%
Relative Humidity (Average)	72%
Maximum Hourly Wind Speed	8%
Maximum 3 Seconds Gust Wind Speed	52 m/sec (115 mph)

Table 4.2: Environmental Design Conditions

The design life and reliability requirements as detailed in the feasibility report prepared by Oskajo (2019) are presented in Table 4.3.

Component	Description
standard design	TCN adopts the Industry standard design working life of 50 years for TL and its
working life	components
Reliability Level	A reliable level of 3 shall be built into the design to offset uncertainties in environmental
	loads and structural resistance with a wind return period of 200 years
Applicable	TCN aligns itself with national and international electrical, civil and mechanical codes
Codes	governing transmission lines. See Appendix 3.2 for details
andStandards	
Tower Type&	Self-supporting suspension, tension, transposition and special tower types with
Design	vertical / barrel configuration shall be used
Tower span and	Average span is 0.425km, Number of towers=350, weight per tower = 4.5tons.
Weight	
Material	Towers shall be of steel material using hot rolled angle (90°) sections and plates. In
selection for the	general, the following grades of steel shall be applicable:
towers	 Mild steel shall be Grade 250 (for plates) and Grade 300 (for angles)
	 The recommended high tensile steel shall be Grade 350L0.
Foundation	The foundation design is based on safety, reliability, economy and reasonability criteria.
Design	Three foundation types (mass concrete, pad and pile foundations) shall be used in the
	proposed project. The mass concrete, and pad foundation types shall be used for
	foundations with small and large loads respectively while the pile foundation shall be
	used in areas where the mass concrete and padfoundations are considered unsuitable.
	The upper surface of the foundation body will be at least 500 mm above the level of the
	surrounding terrain. Special Foundations would be required in areas of low soil bearing
	capacity, special foundations will be required.

Table 4.3: Summary of the design life and reliability requirements

4.9 Grounding

In the context of safety and protection at work (reducing the effects from electric shock, etc.) a special accent will be given to the grounding of towers. The grounding resistance on each tower

must be lower than 17.5 ohms, while for the first five towers before the Strip, it should be at the most 10 ohms.

4.10 Conductor Type

The conductor types selected for the proposed TL line are GZTACSR Goose (for 330kV Lines) and the GZTACSR Lynx (for 132kV Lines). Table 4.4 outlines the design criteria meant to achieve non-sagging and minimize heat capacity.

Conductor			Goose
Size		mm ²	310
Stranding	(Z) TAI	No/mm	16/3.9
			10/TZ(3.94)
	Est		7/2.8
Rated Tensile Strength		kN	113.8
Diameter	GZTACSR	Mm	24.4
	Steel core		8.4
Cross sectional area	Aluminum	nm ²	313.1
	Steel core		43.11
	Total		356.2
Weight	Aluminum	kg/km	1227
DC. Resistance at 20°C		Ω/km	0.0941
Current carrying capacity	GZTACSR (210°C)	A	1,255
Modulus of elasticity	Steel core	GPa	206.9
Coefficient of Linear Expansion	Steel core	10-6/°C	11.5

Table 4.4: Conductor Types

4.10.1 Protective Wires

One of the protective wires will be ordinary alum weld wire 19/9. The other one will be made of optic fibers – OPGW 120/70, with similar mechanical and electric characteristics as the ordinary protective wire. Due to temperature variations, a maximum allowable strain of 1.6 μ

 $2.5x0.18\sqrt{ddaN/m2}$ has been selected in compliance with the phase conductor. The selection of the above value is based on the following criteria:

- Those safety coefficients of protective wires should be higher than the coefficients of phase conductors.
- That slope of the protective wire should be 10-15% smaller than the slope of the phase conductor.
- That protective wire must efficiently protect the phase conductors from atmospheric discharges in a protective angle of 300 degrees

4.10.2 Line Insulation and Fittings

4.10.2.1 Insulators Type

Composite insulators shall be used for the TL. Insulation between the conductors in the span is provided by the spacing in air. Modification to horizontal vee insulators and re tensioning will aid in resolving conductor clearance infringement. To protect the insulators from power arcs with temperatures ranging up to 12,000 K, the insulator strings shall be equipped at both ends with protective arcing fittings. Protective cradles shall be used for multiple insulator sets to avoid clashing of individual strings. To maximize load bearing capacity of the conductor, a tension insulator sets shall be used while an arching device to avoid electric discharge along the insulator skirt shall be used also.

4.10.3 Protection and Earthing System Design

4.10.3.1 Lighting protection and Earthing System

To protect the line and towers against lightning, an earth wire conductor made of copper and galvanized steel at a shield angle of0° shall be used. The mid span clearance between upper conductor and ground wire for the lines shall be 6.5m respectively.

The earthing devices shall be buried in ditches with depth of over 750mm dug in a straight line and backfilled.

Earthing rods will be installed in the soil to conduct failure and induction currents as well as currents from lightning strikes into the earth.

The earthing of both Dead-End Towers will be connected with the earthing system at the substations. The ground-wire will be connected to the gantry and the foundation earthing of the Dead-End Towers will be connected to the foundation earthing of the substation.

4.10.4 The Right of Way (ROW) and Access Corridor Conditions and Operation

The operation of the TL is in accordance to the following conditions:

The Nigerian Electricity Supply and Installation Standards Regulations 2015 (see Legal section) requires that 330KV high voltage lines should have a RoW with 50m width. All structures along this corridor shall be evacuated. In accordance with standard industry practice, TCN has generally adopted a 50 m wide ROW for its 330-kV high voltage power lines.

A ROW is a registered overlaying interest in a parcel of land for which TCN will pay compensation to the landowner for authority to build and operate the power Line. Restrictions are placed on activities permitted on a RoW, such as buildings or excavations, to ensure that the safety of the public is maintained, and the line can operate reliably.

Compensation payments are assessed by professional values and take into account the effect of the RoW on the property.Prior to the decommissioning works, selective clearing will ensure that only trees, vegetation, debris, roots, and other material interfering with the construction process are cleared from the site. Vegetation shall be cleared only along RoW and areas marked for construction of access roads.

Figure 4.3: ROW Clearance along the Transmission Line

Trees shall be cut off at max 30cm above ground level and the stumps left in place for erosion control.

Any debris shall be collected and disposed of through the use of an approved waste disposal contractor. Topsoil shall only be stripped in the areas of tower foundations, associated access roads, and marshaling yards. Care shall be taken to avoid mixing topsoil and subsoil.

4.10.5 Access Tracks

Access to the power Line is required for initial decommissioning, construction and route maintenance. For the Power Line Project, access to the power Line and poles for construction and maintenance will be via the existing Owerri – Onitsha express Way Aba –Porthacort express. Usually access is only required to the structure sites and there is no particular need for access to be along the ROW (other than vegetation management) between structures if existing, alternative access roads are readily available. During the service life of the proposed power Line, access track maintenance is only conducted at lengthy intervals or as required for repairs. Natural rehabilitation of access tracks is carried out as a matter of course as maintenance traffic usually consists of light four-wheel drive vehicles which can traverse rough terrain, sometimes without the need for tracks.

4.11 Decommissioning of the Existing Line

Decommissioning of the proposed transmission line is estimated to take six months to complete and will involve the following operations.

4.11.1 Dismantling of Tower and Tower Foundation

Prior to the decommissioning, all power from the substation and transmission lines will be de-energized. The steel lattice towers will be removed entirely from the way leave. All materials arising from demolition will be disposed of in accordance with relevant Imo, Anambra and Abia states waste management regulations. The excavated areas will be backfilled, covered in topsoil and seeded with an appropriate local mix prior to construction.

4.11.2 Unstringing of Conductors

The conductors will be de-energized, cut, ends removed and reeled and sold to licensed steel recycling vendors. The insulators will be removed and disposed off in accordance with relevant state waste management regulations and international waste management guidelines. It is envisaged that there will be minimal by-products generated through the decommissioning of the transmission line (Detailed waste streams is provided in later part of this Chapter). During the decommissioning phase, the primary waste will be the scrap metal from the steel lattice towers, insulators and cables. Several trucks will be required to transport wastes generated through the decommissioning phase to appropriate waste disposal sites. These vehicles will consume diesel and produce air emissions as a waste. Secondly, through servicing of these trucks, used oils will be generated which are hazardous wastes. Potentially there may be tires that will be replaced and old tires that come out of the trucks during the decommissioning of the transmission line may also be wastes.

4.12 Construction of Power Line

4.12.1 Site Surveys

This generally involve collecting data on ground elevation, cross-fall drainage on the study site, location of gullies, depressions, existing vegetation heights, roads as well as geotechnical and other information that could affect the final layout of the sub-transmission realignment.

4.12.2 Lay-Down Area and Utilities

Throughout the construction period, bottled drinking water will be imported to the job site by means of a tractor trailer truck for use by construction labour. Non-potable water for construction purposes will be obtained from the onsite constructed boreholes. Temporary portable sanitation units will be employed for construction labour. The Project will be responsible for pump-out and disposal of all sanitary waste.

The management and disposal of all construction generated waste streams will be conducted in accordance with all applicable Nigerian waste management regulations including project waste management and disposal standards. To ensure compliance with this commitment, the Project will contractually require its EPC contractor to develop and implement a waste management plan (WMP) consistent with its waste management standards and practices. The EPC contractor's WMP

and any subsequent revisions will require approval from the Project. To further ensure compliance, the Project will conduct periodic assessments of the EPC contractor's waste management activities. The EPC Contractor will be required to promptly resolve any findings from these assessments to the Project's satisfaction.

Construction lighting will be accomplished by relying on mobile light towers, mainly required to illuminate the site each night for security. Temporary diesel electric generators will be used to provide office lighting and service other light loads. It is expected that temporary construction power will be provided by the EPC contractor using tow behind diesel generators for the construction period.

4.12.3 Temporary Site Facilities

Temporary offices facilities essentially construction trailers will be established. Connex boxes will be used to store, dispense and secure consumables, small tools and small equipment.

Some of the materials supplied will be used directly after delivery and as such no piling up is expected. Other materials like aggregates and sand will be stored at the layout area (To be determined by EPC contractors) ready for use. Cement and reinforcement bars will be stored in special storage rooms. Fuel/oils will be stored in drums which shall be stored in bunds (well paved areas which do not allow fluids to come into contact with the soil).

The Transmission Line lay down area will be determined by the EPC contractor. This area will be used during all the stages of the Project. It will aid in keeping materials dry and to provide a surface suitable for vehicle traffic. Later during the construction phase, construction materials and equipment like foundation reinforcement steel or steel tower metal bars will be stored in the area. Security at the lay-down area is expected to consist of a combination of expatriate security managers and local national guards some of whom will be recruited from the host communities. Perimeter security, entry control points as well as roving security patrols will likely be used.

4.12.4 Towers

A large area shall be rented to store the delivered materials towers. The tower material is not arriving tower by tower or tower- section by tower-section. For each type of tower, the bill of

materials and the workshop drawings shall be studied and all parts for a specific tower type have to be picked and separately stored and marked per tower type.

After all material for tower types is sorted out, the specific tower of specific type has to be sorted out. If body extensions or leg extensions are needed the material has to be picked and stored the same way. The completed material of one tower shall be taken off the store not before the tower erection gang has been established on the specific tower site identity. During picking and sorting, tower related materials shall be stored on wood supports in yard and on site. Bolts and nuts delivered per tower shall be unpacked and prepared so that bolt, washer, snap-ring and nut are screwed together and packed again to be carried with tower No X to site.

4.12.5 Bulk Earthworks and Site Levelling

Geomatics Nigeria

Typically, around 300 to 500 mm of imported road base fill material will be distributed across project footprint to obtain the required surface levels along the swampy parts of the TL.

4.12.6 Foundation construction for Towers

Construction of steel-bar towers and installation of electric and protective equipment, including the conductors, insulators, protective wires, earthing, etc., will mainly be of prefabricated type. The design and manufacturing of elements of the steel-bar towers will be in compliance with the requirements incorporated in the Regulation on the technical principles for construction of overhead power lines with nominal voltage of 330kV. It also includes undertaking engineering and designing measures for corrosion protection. In case the power line passes above facilities or entities in nature, i.e. in case when the power line approaches to facilities or entities in nature, the requirements incorporated in the Regulation on technical principles for construction of overhead power lines with nominal voltage of 330 kV will be followed. This refers to the prescribed safety heights and distances. Therefore, special attention is required while conducting the power line above buildings, inhabited places, forests and trees, roads, railway and bridge constructions, antenna installations, gas pipelines, and sections with other overhead power lines. The safety heights and distances for certain entities are presented in the following Table 4.5.

Table 4.5: Safety heights and distances for power lines

Entity / terrain condition	Safety height	Safety distance [m]
	[m]	
Inaccessible places	6	5
Places accessible for vehicles	8	7
forests and trees		5
Inhabited places	9	
Roads (local, State, Federal		12/20/40
highways)		
Bridge constructions		7
Gas and oil pipelines	Minimum of	Minimum of 10 m away
	10m away	

 Table 4.6: Types, Quantity and sources of project requirements during the Decommissioning, Pre-construction, Construction, Operation

 and Decommissioning phases

Requirement	Туре	Source	Estimate	ed	Estimated		Estimated		Estimated		
s			Quantity/Number		Quantity/Number Q		Quantity/Number		Quantity/Number		
			decommissioning		construc	onstruction Operati		Operation phase		Decommissionin	
			and		phase				g phase		
			Precons	truction							
			phase								
Energy	Electricity	Public utility and	Nil		110V		Nil		Nil		
		generators									
	Fuel	Local Vending	As the n	eed arises	As the n	eed arises	As the	e need	As th	e need	
		Stations					arises		arises		
Manpower	Skilled	Contractor	Men	Women	Men	Women	Men	Wome	Men	Women	
								n			
			80	20	100	30	100	50	70	30	
	Laborers	Locals in the	300	50	1,500	700			1,300	300	
		project area									
	Un skilled	Locals in the	300	50	1000	150			150	50	
		project area									
Raw	Coarse aggregates	From the nearby	302, 400	302, 400m ³ 22,350m ³		3	Nil		Nil		
Materials		existing									

		commercial				
-		quarries	75.000	10,000 3	A 19	A.11
	Hard core	Same as coarse	75,000m ³	16,000m ³	Nil	NII
-		aggregates		0.000		
	Fine aggregates	From commercial sources	NII	3,600m ³	NI	NII
	Sand	From commercial sources	191,400m ³	Nil	Nil	Nil
-	Water	Municipal water	31,000,000 litres	10,000,000 litres	Nil	Nil
		supply and				
		commercial				
		purchases				
-	Cement	Local cement	173,141m ³	27,133m ³	Nil	Nil
		depot				
	Reinforcement bar	reinforcements are	194,452m ³	17,342m ³	Nil	Nil
		readily available in				
		local iron and steel				
_		stores				
	Boulders	Contractors	As the need arises	Nil	Nil	Nil
-	Rough sawn timber	Contractor	As the need arises	Nil	Nil	Nil

	Oil (transformer oil)	Contractor	5drums/year	Nil	Nil	Nil
Equipment/	Dump trucks	Contractor		10	Nil	Nil
Machines	Graders	Contractor	2	5	Nil	6
	Motor Grader	Contractor	Nil	Nil	Nil	7
	Bull Dozers	Contractor	2	12	Nil	5
	Water Boozers	Contractor	Nil	5	Nil	Nil
	Vibrators	Contractor	Nil	7	Nil	Nil
	Excavators	Contractor	3	13	Nil	10
	Water Truck	Contractor	1	Nil	Nil	Nil
	Tractor /Trailer	Contractor	1	Nil	Nil	Nil
	Elevatedwork platform	Contractor	5	Nil	Nil	Nil
	Diesel light trucks duty	Contractor	6	Nil	Nil	Nil
	trucks					
	Concrete Batching	Contractor	3	Nil	Nil	Nil
	Plant					
	Generator	Contractor	1	Nil	Nil	Nil
	track or 4WD mounted	Contractor	1	Nil	Nil	Nil
	drill rig					
	Macadam roller	Contractor	1	Nil	Nil	Nil
	Diesel Heavy Dump	Contractor	5	Nil	Nil	Nil
	Truck					

Diesel Heavy Mixer	Contractor	1	Nil	Nil	Nil
Truck					
Workers Buses	Contractor	5	Nil	Nil	Nil
Light Vehicle	Contractor	Nil	Nil	5	4

*Estimated quantity of materials and equipment are as supplied by TCN

Source: GNL, 2017

4.13 Transportation

Figure 4.4 shows a map of road network for the transmission line. Men and equipment will be transported to the transmission site via:

- Aba Port Harcort Express Way
- Umuikaa Owerrri Road
- Owerri Onitsha Express Way

Figure 4.4: Map of Road Network for the TL

A Traffic Management Plan (TMP) outlined in Chapter 8 shall be updated by the construction Contractor, as a part of the ESMP. TMP is to focus on the preconstruction and construction phase of the project and in addition, must also include (but not be limited to):

- The management of movement of children, adults, cars, cows, etc
- Security of the equipment delivered
- Time schedule of work timing i. e. from what priod to what period per day
- off loading of the equipment

- Access to and from structure sites;
- Work methodologies for restringing across roadways;
- Arrangements for temporary road closures;
- Parking; and
- Any security access arrangements.

4.14 Emission Estimation

The amount of dust (from pre-construction and construction activities), noise (emission from bull dozer, diesel tanker, excavator, wheel loader, ambulance, dump truck, grader and generator) and noxious gases (from diesel tanker, excavator, wheel loader, dump truck, generator and grader), expected to be produced from each activity and equipment were quantified as shown in the succeeding sections.

4.14.1 Dust Emission Estimation

Three species of particulate matter (TPM, $PM_{(10)}$, $PM_{(2.5)}$) were quantified for some activities and equipment that could potentially generate dust. The dust emission was estimated as follows:

4.14.2 Pre-construction and Construction phases

Particulate matter could be potentially generated during construction and developmental stage of the proposed transmission project activities.

The quantity of dust estimated during these phases is 1×10^6 m tones. The expected emission rate of particulate matter is obtained using the formula:

Where

S = silt content

M = moisture content

$$TPM = \frac{2.6 \text{ (s)} ^{1.2}}{(M)^{1.3}}$$
$$PM_{(10)} = \frac{0.45(\text{s}^{1.5})}{(\text{m}^{1.4}) \times 0.15}$$
$$PM_{(2.5)} = \frac{2.6 \text{ (s)} ^{1.2}}{(\text{m}^{1.3}) \times 0.105}$$

The projected particulate emission using the formula above for the proposed Alaoji - Onitsha project site in South East Nigeria is shown as:

TPM = 0.08E +01

PM₍₁₀₎ = 0.114E + 01 PM_(2.5) = 0.613E + 01

4.14.3 Green House Gases (GHG) Emissions

Total emissions of GHGs from project equipment and vehicles were determined using the SCEG tool version 5.1 created by the US Environmental Protection Agency. Mobile sources, like owned or leased cars and heavy-duty vehicles generate emissions by burning fuel. Mileage or fuel use was estimated based on vehicle fuel economy from <u>www.fueleconomy.gov</u>, since other data sources are not readily available as at present.

Fuel usage and mileage is reported the same for hybrid vehicles as for conventional vehicles such as Pickups and Vans are classified as "**Light Trucks**", Trucks (Diesel heavy dump truck, water truck, Diesel heavy mixer truck) weighing more than 8,500 lb are classified as "**Heavy- Duty Trucks**", while Non-highway vehicles (dozers, tractors, excavators, concrete batching plants) used in construction are classified as "Construction Equipment". Table 4.7 presents the details of equipment and vehicles required for the construction of the TL, substation and access roads.

Type of Equipment/Vehicle	Transmission line	Transmission
	decommissioning	line
	and	construction
	preconstruction	
Water truck	2	4
Dozer	4	-
Diesel heavy duty dump truck	5	7
Crane	3	5
Track mounted drilling rig	3	3
Diesel heavy mixer truck	-	5
Tractor	1	1
Diesel light duty truck/vehicles	5	5
Excavator	4	2
Concrete batching plant	-	2
Passenger busses	2	5

Table 4.7: Details of Estimated quantity and types of Equipment/vehicle Required for the Project

Geomatics Nigeria

ESIA REPORT FOR THE PROPOSED RECONSTRUCTION OF ALAOJI-ONITSHA 330kV DC QUAD CORE TRANSMISSION LINE

4.14.4 Emission Estimation during Decommissioning Phase

The initial decommission phase is expected to last for a period of six months, after which construction shall commence. The total estimated GHG emissions expected to result from decommissioning activities is presented in Table 4.8.

	Transmis	Transmission line decommissioning								
Equipment Category	Number	Average	Fuel	Mileage	CH ₄	N ₂ 0	CO ₂			
		fuel	usage		(kg)	(kg)	(kg)			
		economy	(gal)							
		(mileage/g)								
Diesel Construction	19	17.3	1,699	29,399	968.6	441.8	31,643			
Equip.										
Diesel Light-Duty Trucks	5	7.3	755	5,658	5.7	8.5				
Diesel Medium- and	5	7.3	310	2,263	11.5	10.9				
Heavy-Duty Vehicles										
Diesel Passenger Cars	2	23.9	315	7524	3.8	7.5				
Total	31		3,079	44,844	989.6	468.7	31,643			

Table 4.8: Details of estimated GHG to be emitted during TL decommissioning

In all, a total of 31,643kg of CO₂ is estimated to be emitted in as a result of decommissioning the existing TL. This also includes 989.6kg of methane and 468.7 kg of nitrous oxide. This is approximately 196.0 metric tons of CO₂ equivalence. Diesel construction equipment shall be the major sources of these criteria pollutants as established in the result.

4.14.5 Emission Estimation during Construction Phase

The total estimated GHG emissions expected to result from construction activities is presented in Table 4.9.

	Transmis	Transmission line construction							
Equipment Category	Number	Average	Fuel	Mileage	CH ₄	N ₂ 0	CO ₂ (kg)		
		fuel	usage		(kg)	(kg)			
		economy	(gal)						
		(mileage/g)							
Diesel Construction Equip.	15	17.3	343	5,940	195.7	89.3	24,913.5		
	7	7.0	775	5 050	F 7	0.5			
Diesei Light-Duty Trucks	1	1.3	//5	5,658	5.7	8.5			
Diesel Medium- and	5	7.3	1,085	7,921	40.4	38			
Heavy-Duty Vehicles									
Diesel Passenger Cars	5	23.9	237	5,658	2.8	5.7			
Total	32		2,440	25,177	244.6	141.5	24,913.5		

Table 4.9: Details of estimated GHG to be emitted during TL construction

eomatics Nigeria

A total of 24,913.5kg, 244.6 kg and 141.5 kg of CO_2 , CH_4 and N_20 respectively are estimated to be emitted during the TL construction. This is approximately 73.2 metric tons CO_2 equivalence. Diesel Medium- and Heavy-Duty Vehicles shall be the major sources of these criteria pollutants as presented in the result.

4.15 Energy Consumption (Demand Component) Among PAPS in Alaoji – Onitsha TL

The average energy consumption data for households, artisanal operations, government offices, banks, schools (tertiary and pre tertiary), hospitals and industries revealed information presented in Table 4.10. The data took into cognizance all activities requiring energy consumption in the area. Data were obtained from ground trotting activities during field survey and from the Nigerian Bureau of Statistic, Annual Report of Statistics 2012. The data base is a living document that would be updated as events becomes actions. The EPA Household GHG emission and reduction tool was used in estimating the amount of CO₂ emitted yearly by different activities in the project area. Using this tool, it is assumed the average monthly consumption of 5,500 cubic feet of gas, or average annual consumption of 66 thousand cubic feet per household, if the average household size is 3.8

(http://www.eia.gov/consumption/residential/data/2009/index.cfm?view=consumption). On obtaining the figure, extrapolations were made using an average household composition of the three project States.

Table 4.10: Energy consumption rates, activities and consequence annual CO_2 emiited in the affected LGAs in both States

Activity		Unit	Aver	Aver	Average	Estimated CO ₂	Estimated CH ₄	Estimated N ₂ O
			age	age	fuel and	emitted per year	emitted per	emitted per year
			Litre	Litre	diesel	(kg)	year (kg)	(kg)
			of	of	consumpti			
			Fuel	Diese	on			
			per	l per	Per month			
			day	day	(litre)			
Househol	Abia	670	2	0.5	41,205	947,963,755.9	29,646,523	14,041,355.5
d	Anambr	690			42,435	976,261,221.3	30,531,495.3	14,460,501
lightening	а							
	Imo	1300			79,950	1,839,332,711.2	57,523,106.3	27,244,421.9
Artisanal	Abia	211	5	2	44,310	1,019,397,541.9	31,880,536	15,099,441.5
operation	Anambr	141			29,610	681,208,788.3	21,304,055	10,090,148.2
s and	а							
non-	Imo	224			47,040	1,082,203,998.6	33,844,739	16,029,738.5
governme								
ntal								
offices								
Governm	Abia	13	-	10	3,900	89,723,546.9	2,806,005.2	1,328,996.2
ent	Anambr	12			3,600	82,821,735.4	2,590,158.6	1,226,765.7
offices	а							
	Imo	21			6,300	144,938,037.2	4,532,777.6	2,146,840
Banks	Abia	9	-	20	5,400	124,232.56	3,885.24	1,840.15
	Anambr	6			3,600	82,821.858	2,590.2	1,226.77
	а							
	Imo	7			4,200	96,625.274	3,021.85	1,431.23
Schools	Abia	463	5	3	111,120	2,556,430.9	79,949.6	37,866.2
(Pre-	Anambr	501			120,240	2,766,246.1	86,511.3	40,974
tertiary	а							
	Imo	728			174,720	4,019,614.8	125,709	59,539

Geomatics	Nigeria united

and								
tertiary)								
Hospitals	Abia	21		10	10,710	246,394,663.4	7,705,722	3,649,628
	Anambr	28			14,280	328,526,217.6	10,274,295.9	4,866,170.7
	а							
	Imo	37			18,870	434,123,930.8	13,576,748.2	6,430,297
Industries	Abia	73	5	10	32,850	755,748.4	23,635.2	11,194.2
	Anambr	52			23,400	538,341.4	16,836	7,973.98
	а							
	Imo	84			37,800	869,628.4	27,196.7	12,881
Total fo	or 2.57						246,585,497.1	
household						7,884,705,838.19	9	116,789,230.73
Total for 3.	.8					11,658,319,916.4	364,601,124.2	172,684,465.7
(combined	average							
household	size for							
Abia, Anan	nbra and							
lmo)								

The estimated annual emissions of CO_2 , CH_4 and N_2O emitted as a result of energy consumption within the project's area of influence is about 11,658,319,916.4kg, 364,601,124.2 kg and 172,684,465.7 kg respectively. This is approximately 75,940,746.9 of CO_2 equivalence in metric tons.

4.15.1 Emission Estimation from Fuel Wood Consumption in the Project Area

The total amount emitted in the project area from household fuel wood consumption for cooking is presented in Table 4.11. Data for the assessment was obtained from Nigerian National Bureau of Statistics, Annual Abstract of Statistics Report of 2011. Assumptions for the estimation of the total CO₂ emitted were based on Arno Frühwald, University of Hamburg report on *Wood and Climate Change*, 2018. It was assumed that wood is composed of up to 50 per cent carbon. One cubic metre of wood weighs 500 kilograms on average, which means it contains about 250 kilograms of carbon. When carbon is transformed into carbon dioxide (oxidised), 1 kg of carbon creates about 3.67 kg of CO₂. Therefore 250 kg of carbon creates 917 kg of CO₂, which is about 1 tonne of CO₂ per cubic metre of wood (Table 4.11).

Table 4.11: Details on CO₂ Emissions in the project area from household fuel wood consumption for cooking

Geomatics Nigeria 📖

State	Numb	Number of	Percentage	Number of	Per	Total	Total amount	Total of
	er of	Households	number of	households	Household	amount	of CO ₂	CO ₂ amo
	Affect	in LGAs	households	that	fuel wood	of fuel	(kg/year)	unt in
	ed		that	consume	consumption	wood		MT/yr
	LGAs		consume	fuel wood	(kg/year)	(kg/yea		
			fuel wood,			r)		
			2010					
Abia	4	224,256	72.6	162,809.9	624	101,59	186,321,224.	18,6321.
						2,816	5	22
Anambr	4	173,425	54	93,649.5	598	56,002,	102,708,403.	102,708.
а						401	4	40
Imo	8	398,058	84	334,368.72	566.8	189,52	347,580,029.	347,580.
						0,190.5	4	03
Total	16	795,739		590,828.12	1,788	157,78	636,609,657.	636,609.
						4,927.5	3	66

As could be seen in Tables 4.11 and 4.12, an estimated annual total of 636,609,657.3kg and 636,609.66 MTof CO₂ is emitted on an annual basis in the project area.

Table 4.13 outlines gross total of carbon footprint resulting from the proposed project and that generated by activities and persons in the project area. The total is expressed in terms of MT CO₂ equivalence.

Table 4.12: Total MTCO₂ Equivalence

GHG supply Component		GHG Demand Component						
Project Phases	MTCO ₂	Activities by	MTCO ₂					
	Equivalence	PAPs	Equivalence					
Initial Decommissioning	196.06	Energy	636,609.66					
		consumption rate						
Construction	73.20	Fuel wood for	75,940,746.9					
		cooking						

	269.25		76,577,356.56					
Total GHG Footprint	76,577,625.81							
Project predicted to reduce	7.5 x 76,577,625.81/1	5,743,321.94						
GHG emisions by 7.5 % in								
the project area								
Net MTCO ₂ Equivalence	70,834,303.87							

When the project is completed and power being distributed to the various household, businesses and organizations in the project area, the energy consumption rate is expected to drop by 7.5% resulting in GHG foot print reduction of about **5,743,321.93** MTCO₂e for the project life cycle resulting in a negative net GHG emission of 70,834,303.87 MTCO₂e. The project would add an estimated 269.2516 metric Tonnes of CO₂ and its equivalence (N₂0 and CH₄) to the environment reduce **5,743,321.93** MTCO₂e while a total of 70,834,303.87573 MTCO₂e shall still be emitted yearly in the project area.

4.15.2 Treatment and Waste Disposal Methods

4.15.2.1 Solid Waste (Degradable)

The minimal biodegradable wastes and cut down shrubs can be left at safe locations along the ROW for use as fuel woods by locals.

4.15.2.2 Solid Waste (Non-Degradable)

Scrap metals and drums will be sold to recyclers; topsoils will be sold to quarries as backfilling materials while tins, glasses and plastics and other non biodegradable wastes shall be safely collected and taken to the government authorized dumpsites within the city.

4.15.2.3 Faecal Waste

A soak away system shall be installed in all the substations and when full, faecal waste shall be disposed of properly by relevant waste disposal agents. Line route workers shall be intimated on safe disposal of faecal waste during work. Adequate toilets that will be evacuated by approved disposal vendors shall be provided at worksites.

4.15.2.4 Liquid Wastes

Liquid wastes such as sewage and other effluents shall be pre-treated in septic tanks. Also, adhered spent oils from transformers are drained out before delivery to authorized dump sites.

4.16 Project Schedule

The different stages of the project implementation are contained in the work schedule attached hereunder Table 4.14.

Table 4.13: Project Schedule for the Alaoji - Onitsha Transmission Line

S/	Description	Duration	1st Qtr.	2nd Qtr.	3rd Qtr.	1 st Qtr	2 nd Qtr	3 rd Qtr	1st	2 nd Qtr	3 rd Qt	1s	2 nd Qtr	3 rd Qtr
Ν		(months	2019	2019	2019	2020	2020	2020	Qtr.	2021	r	Qtr.	2022	2022
)							2021		2021	2022		
1	Feasibilitystudies	12												
2	Line route studies	4												
3	EIA studies	9												
4	RAP studies	9												
5	Front End Engineering Design	12												
6	EPC ContractawardProcess	6												
7	Mobilization	2												
8	Check survey of EPC	1												
	Contractors													
9	Transmission Line detailed	2												
	design													
10	Material production (tower,	7												
	conductors, insulators, line hard													
	wares)													
11	Materialtesting	4												
12	Materialshipment	2												

13	Clearing and grub site along	1						
	transmission line corridor							
14	Access road widening and	1						
	Decommissioning (removal of							
	existing towers and TL)							
15	Foundations for tower	4						
	installation							
16	Tower erection	8						
17	Conductorstringing	6						
18	Commissioning and testing	1						
19	Reinstallation and clean up	1						
20	Demobilization from site	0.5						
21	Commissioning	1 day						

4.17 Decommissioning

The project has a life span of 50 years. Decommissioning activities will be implemented in compliance with applicable regulations. The activities that would be involved during the decommissioning include the following:

- Decommissioning and site-clean up
- Disposal of waste generated
- Site review and reclamation.

Decommissioning generally entails resolving all grievances issues that will have arisen among workers, communities, etc. during the course of the project implementation, and returning the environment (reclamation) to near its original status as much as possible. *The aim of proper decommissioning is to, among other things, ensure continuation with subsequent developments and reduce hinderances to future and subsequent developments as much as possible.*
Geomatics Nigeria

ESIA REPORT FOR THE PROPOSED RECONSTRUCTION OF ALAOJI-ONITSHA 330kV DC QUAD CORE TRANSMISSION

CHAPTER FIVE PROJECT AREA OF INFLUENCE

5.1 General Considerations

Project Area of Influence (AoI) is the geographic area likely to be affected by the project as well as unplanned developments induced by the project. Determining the AoI therefore requires informed but subjective judgment, based on available information and the knowledge of previous and similar project impacts, combined with practical findings.

The ESIA Regulations require the definition of an Area of Direct Influence (ADI) and an Area of Indirect Influence (AII).

5.2 Area of Direct Influence (ADI)

The Project's ADI is made up of two components:

- The footprint area, i.e., the area occupied by the Project's infrastructure; and
- The area where direct impacts from the construction and operational activities will be felt.

The footprint includes the area occupied by the transmission tower, the substations and the RoW. In the construction phase, the footprint also includes ancillary infrastructure such as temporary access roads and construction camp sites. It is expected that these ancillary infrastructures will be located in the immediate vicinity of the Project site. Within the footprint area, several activities will be implemented such as soil stripping, vegetation clearing, earth movements, etc., but they will be contained to their footprint.

The Project's direct impacts outside of the footprint area include the biophysical and socioeconomic impacts. Therefore, the Project's ADI is delineated as follows:

- Biophysical environment: it is expected that all direct biophysical impacts resulting from Project construction and operation will be limited within a corridor centered in the TL alignment, with maximum width of 1 km (500metres on either side of the TL RoW). It is 1.5km² base radius for each sub stations. These widths account for a wider construction corridor, which will likely be required to establish temporary accesses, machinery movement, etc.
- **Socioeconomic environment**: Direct socioeconomic impacts are expected to be felt mostly by the villages and communities crossed, or near, the alignment. The socioeconomic ADI is illustrated using a 2km wide corridor cantered on the line's route and epicentre of the substation.

Direct impacts are also to be expected in the areas where the auxiliary construction and reconstruction facilities will be located (construction camps, temporary accesses, burrow pits).

5.3 Area of Indirect Influence (All)

The Project's All is the geographic area where indirect impacts are likely to be felt, or in other words, where secondary impacts resulting from direct ones are felt.

In terms of the biophysical environment, few or no indirect impacts are expected outside of the ADI. Other socioeconomic indirect impacts will likely be felt, namely associated with creation of job opportunities, mobilization of workforce, development of informal commercial activities, etc. These indirect impacts are likely to be experienced mostly in the areas closer to the TL alignment

As such, the Project's All is defined as follows:

- Biophysical environment: a 1 km wide corridor, centered RoW;
- Socioeconomic environment: the boundaries of the districts crossed by the TL, as benefits and impacts from Project-induced changes in the ADI are likely to extend to other communities within these territories.

Figure 5.1 is a map showing the project Area of Influence within the biophysical and socio-economic components of the Transmission line.

Figure 5.1: Map of the Project Area Showing the Area of Influence

CHAPTER SIX

DESCRIPTION OF THE ENVIRONMENT AND SOCIAL BASELINE

6.1 Identification of the Study Area

The project areas are located in the southernregion of Nigeria which generally falls in the tropical rainforest climate. It cut across Abia, Anambra and Imo states respectively. The project is anticipated to expand and link the already existing substation in Alaoji with that of Onitsha. In order to fully characterize the baseline conditions, the line route and the substation needed be studied. This is so because the environmental and social impacts of the line route differ from that of the substation. A spatial boundary of 50 metres on both sides of the proposed line route and 1km base radius for the substation was established. This is in consonant with the regulatory requirements for linear project in Nigeria. Figure 6.1 is a map showing the location of the line route.

Figure 6.1: Location of the Proposed Line Route

6.1.1 Overall Data Collection Methodology

The summary of baseline conditions is based on the one season data collected from field, supplemented by the secondary data from approved ESIA Report on the Ukanafun – Oma Power Plant Fas Pipeline Project 2016 (dry season data) of Abia and Akwa Ibom States, including literatures. The data acquired will be used in further environmental management decisions and future monitoring of changes, if any, in the environmental and social components.

A combination of data from existing literature and field sampling campaign was used to inform the preparation of the baseline chapters for various environmental and social components. In accordance with the approved TOR by the FMEnv and EMSF document for this project. The data was collected as follows:

Baseline data for the dry season was collected from existing literature, notably the approved ESIA of Ukanafun – Oma Power Plant Gas Pipeline Project 2016. Wet season baseline data for this project was collected between 26th August and 2nd September 2019. A summary of the available data for the wet and dry season used in the preparation of the baseline chapter of this ESIA is presented in Table 6.1.

	Ukanafur	n –	ata collected between 26th							
	Oma F	Power	August and 2nd September 2019)							
	Plant	Gas								
	Pipeline									
	Project 2	016								
Environmental/Social			Samples	Actual	No	Comments				
Component			requested	collected						
			by FMEnv							
Climate and meteorology	10		20	20		Only twenty of the forty				
						samples collected were				
						analyzed as specified by				
						the FMEnv.				
Air quality and noise levels	10		20	20		Air and noise quality				
						samples points were same				
						as for soil and				
						meteorology				

Table 6.1: Summary of Data Collected for the ESIA of Ukanafun

Soil	15	40	20	lopsoil and subsoil
				samples were collected at
				each point
Groundwater	4	6	3	Three samples were
				collected at each sub
				station
Surface water	11	10	10	Samples were collected at
				10 points, including a
				control point

Field studies and data collection for characterization of the baseline conditions of the proposed project environment, in line with the approved TOR by the FMEnvcovered:

- Climate and meteorology
- Air quality and Ambient noise levels
- Geology/hydrogeology
- Surface and groundwater
- Soil
- Sediment
- Vegetation & fauna wildlife
- Hydrobiology, fisheries and
- Socio economics/health impact, demography and community characteristics.

The acquisition of data involved field data gathering, measurements and the collection of representative samples used to establish the environmental conditions of the study area. This exercise involved a multidisciplinary approach and was executed within the framework of a QHSE management system approach. This approach assured that the required data and samples were collected in accordance with agreed requirements (scientific and regulatory) using the best available equipment, materials and personnel. Elements of this approach include:

- review of existing reports that contain environmental information on the study area;
- designing and development of field sampling strategies to meet work scope and regulatory requirements;

 pre-mobilization activities (assembling of field team, sampling equipment/materials calibrations/checks, review of work plan and schedule with team, and job hazard analysis);

mobilization to field; fieldwork implementation –representative samples collection (including positioning and field observations), handling, documentation and storage protocols and procedures; anddemobilization from field; transfer of sample custody to the laboratory for analyses.

Quality Assurance/Control

The following are the Quality Assurance and Quality Control undertaken to guarantee the intergrity of the data and analytical results

- Only adequately trained personnel were used for the laboratory analysis.
- The personnel were briefed on the scope of work.
- Complete adherence to written analytical work instructions available to staff involved in project execution were maintained and verified.
- Routine auditing and checking of results at every stage of analysis were implemented. Quality control solutions and mid-point standards were also introduced in every batch of samples or every set of ten samples. Analyses for which deviation of these quality control / mid-point standards which were outside 90 to 110% of expected concentration ranges were repeated.
- Equipment were adequately calibrated prior to use and checked by the supervising officer.
- Sediments were not dried before extraction takes place.
- Solvent used were those of the lowest possible boiling points. When evaporations were
 necessary, solvents were reduced or removed with great care at temperatures no higher
 than 30°C.
- Analysis schedule indicating analysts assigned to carry out various tests were drawn up. During benthic analysis, internal standards shall be added before extraction takes place.
- Analytical errors were controlled by duplicate analysis at pre-determined intervals, sample spiking, etc.

Materials that were consulted included approved reports on previous environmental surveys in the area, publications, textbooks, articles, maps, etc. on the area and similar environments. The list of materials consulted is specified in relevant sections.

6.2 Physical Environment

6.2.1 Climate

The region has a tropical climate with humidity and rainfall decreasing from the coast inland and characterized by uniformly high temperature and a seasonal distribution of bimodal rainfall (Anyadike, 2002). The mean minimum and maximum temperatures ranged from 21-30°C in the coast and 29-33°C in the interior or inlands (Chukwu, 2007). Table 6.2 shows the summary of climatic data for the project area between 1988 and 2018.

Table 6.2: Climatic data of Abia, Anambra and Imo States

Mont	Abia Sta	ate				Anambr	ra State				Imo State				
hs	Temp	Rainfa	Relative	Wind	Sunsh	Temp.	Rainfall	Relative	Wind	Sunshi	Temp.	Rainfall	Relative	Wind	Sunsh
	(OC)	ll (mm)	Humidity	speed	ine	(OC)	(mm)	Humidity	speed	ne (hr)	(OC)	(mm)	Humidity	speed	ine
			(%)	(km/h)	(hr)			(%)	(km/h)				(%)	(km/h)	(hr)
Jan	27.1	25	44	5.9	308.5	25.7	8	32	5.9	310	26.7	17	60	5.2	290.5
Feb	28	47	61	6.3	221.5	27.2	17	57	8.2	249	27.5	37	54	7.9	275.2
Mar	28.4	114	68	6.6	230	28.1	53	67	9.4	220.2m	27.9	98	69	8.7	278.5
Apr	28	175	73	6.3	223	28	106	71	9.1	248	27.6	166	75	8.1	262.2
May	27.4	252	77	6	222.5	26.4	175	75	7.7	234	26.8	225	79	7.4	248.0
Jun	26.6	276	86	5.8	197.5	25	182	84	7.2	208	26	363	84	6.9	205.5
Jul	25.5	328	87	5.3	168.5	24.5	181	87	6.8	179	25.1	313	86	6.8	176.5
Aug	25.4	274	85	6.8	157	24.2	175	87	7.7	186	25	339	90	7.9	141.5
Sep	25.9	325	87	5.4	166.5	24.5	276	87	6.1	184.5	25.5	322	88	6.2	179.5
Oct	26.3	276	82	5.1	160	25.1	174	79	6.2	172.5	25.9	269	85	6.4	226.5
Nov	26.9	85	73	4.7	210	26	27	67	5.5	234.5	26.7	52	75	5.9	257.0
Dec	27.1	16	52	5.3	299.5	25.6	9	35	6.1	298	26.6	18	59	5.6	289.0

Source: NIMET, 1988 - 2018

6.2.2 Meteorology (Micro-Climatic Conditions)

The prevailing micro climatic conditions (temperature, humidity and wind speed) of the study area were measured *in-situ*. Measurement was carried out with the aid of Aeroqualaerocet 531. This equipment was calibrated and held at arm-length towards the direction of the prevailing wind. The value of the climatic elements was read off screen and data documented. The sampling locations for noise and air were same for air quality. The results of the meteorological conditions of the study and proposed project area are presented in Table 6.3.

SAMPLING		Wind Direction		
PARAMETER	Wind speed (m/s)		TEMP. (°C)	RH (%)
Alaoji-Ihiala				
Mean	5.3	North-east	26.7	65.9
Min.	3.8	North-east	24.5	64.9
Max.	5.9	North-east	28.9	66.9
Ihiala-Onitsha				
Mean	5.3	North-east	27.2	65.6
Min.	4.4	North-east	25.9	64.1
Max.	6.0	North-east	27.9	67.6
Secondary data	55	North-east	27 8	57.2
(mean)				

Table 6.3: Result of On-Site Meteorological Measurement

Source: GNL Survey, 2019

All microclimatic data obtained in the field conformed favourably with secondary data (Ukanafun – Oma Power Plant Gas Pipeline Project, 2016). Expectedly, during construction and operation phases, as ambient temperature increases, the outstretched conductor length is expected to increase, resulting in sag increase and decrease in conductor tension. This phenomenon was factored in the environmental design conditions of the proposed project and also for proffering the mitigation measures outlined in chapter seven.

The linear relationship shown between wind speed and elevated levels of tension in conductors during power transmission is a causal factor in power failure (Orawski Eurlng, 2013). However, wind, speed levels in the area is minimum and risk of power failure through this factor is low.

6.2.3 Topography

Altitudes influence electricity transmission lines due to its impact on the dielectric behavior of airinsulated systems. As a result, atmospheric and voltage correction factors must be applied in airinsulated transmission systems operating in high-altitude conditions. Figure 6.2 shows the topography of Nigeria in relation to the project area. Nigeria is characterized by four elevation regions (Adelana, et al 2008). This results from the merging of the River Niger and Benue. The lowland topographic regions found mainly in the south have elevations ranging between 0-200m. The coastal plains are found in both the southwest and the southeast, mostly covered by swamp and mangrove forests, merging into highly degraded forest inland. To the southwest of the Niger valley lays a rugged landscape defy by the Western Plains (WP) interspersed with the Western Highlands (WHL). The heavily populated Jos Plateau with its semi-temperate climate, Nigeria's largest area above 1,000-m elevation, rises prominently from the riverine plains.

Figure 6.2: Map showing topography of Nigeria and the project area *Source: Adelana et al 2008*

Topography of the project area

The elevation of the project area as provided ranged from 51.014m to 62.472 m. Figure 6.3 illustrates this information.

Figure 6.3: Topographic Map of the Project Area in 3D

6.2.4 Ambient Air Quality

6.2.4.1 Sources of Air Pollution

Air pollution is the presence in the atmosphere of one or more contaminants in such quantities, characteristics, duration as to make them actually or potentially injurious to human, plant, or animal life or to property, or which unreasonably interfere with the comfortable enjoyment of life and property. The air quality in the study area can be influenced from both natural and anthropogenic sources. Possible anthropogenic activities that influence air quality in the study area majorly include:

- Fuel combustion from vehicular movements
- Household energy consumption
- Municipal and agricultural waste sites and waste incineration/burning
- Indiscriminate bush burning

6.2.4.2 Air Quality Measurement

Atmospheric gases were measured with the aid of Universal Gas Analyser MX6. This equipment was calibrated and held at arm-length towards the direction of the prevailing wind. The value of the atmospheric concentrations of each gaseous pollutant was read off directly on the equipment screen and data documented.

Measurements were conducted between 07:00 and 19:00hrs Nigerian time, for air measurements. Specific locations for measurements were selected with consideration for concentrations of human receptors such as residential areas, commercial areas, hospitals, churches schools and farmlands. The co-ordinates of the sampled locations for air quality, noise and soil quality are presented in Table 6.4 and sampling map in Figure 6.4.

Parameter	Equipment	Detection Limit
Total Suspended Matter	Casella Cel Micro Dust Pro 880nm	0.001
Hydrogen sulphide	Gas Alert Extreme (BW Technologies) Model GAXT- H-DL	0.001
Carbon monoxide	Gas Alert Extreme (BW Technologies) Model GAXT- M-DL	0.001
Sulphur oxides	Gas Alert Extreme (BW Technologies) Model GAXT- S-DL	0.001

Table 6.4: List of Air and Noise Quality Equipment Used in th	e Study
---	---------

Ammonia	Gas Alert Extreme (BW Technologies) Model GAXT-	0.001
	A-DL	
Nitric Oxide	Toxi RAE II PGM -1140	0.001
Nitrogen iv oxide	Gas Alert Extreme (BW Technologies) Model GAXT-	0.001
	N-DL	
Carbon iv oxide	Alnor CF910	0.001
Total Hydrocarbon (THC)	Crowcon MultiGas indicator	0.001
Noise Level	Pulasa Sound Meter Model 14	10.0
Meteorology	Aeroqualaerocet series 531	0.1
Chlorine (Cl ₂)	Cl ₂ Crowcon Gasman S/N: 19812H	0.001
Hydrogen Cyanide (HCN)	HCN Crowcon Gasman S/N: 19773H	0.001
Source: GNL survey, 2019		

Ambient air quality measurements were carried out on site using *in - situ* digital meters (Plate 6.1) at 20 locations (Figure 6.5).

Plate 6.1: Air quality Equipment (Casella Cel Micro Dust Pro 880nm)

Figure 6.4: Map Showing Air Quality /Noise/Soil Sampling Locations

Measurements were conducted between 09:00 and 17:00hrs Nigerian time, for air measurements. Specific locations for measurements were selected with consideration for concentrations of human receptors such as residential areas, commercial areas, hospitals, churches schools and farmlands. Table 6.5 shows sampling locations and coordinates.

CODE	Latitude	Longitude	TIME	Description
AN1	7.333333	5.116667	15:42	Track roads and farmlands
AN2	7.333333	5.100000	17:14	sparsely built up area
AN3	7.333300	5.016667	13:37	Residential
AN4	7.316667	5.050000	11:52	residential area, partially paved
				road
AN5	7.316667	5.016667	12:30	Residential
AN6	6.816667	6.100000	08:09	Residential
AN7	6.850000	5.950000	10.26	Residential
AN8	6.833333	5.900000	14:53	Farmland
AN9	7.033333	5.483333	18:00	church
AN10	6.933333	5.650000	13:31	Market
AN11	7.083333	5.400000	16:56	Highly built-up area
AN12	7.083333	5.533333	10:20	Farmland
AN13	7.016667	5.566667	10:25	school
AN14	7.066667	5.433333	14:02	Market
AN15	6.900000	5.766667	18:04	church
AN16	7.116667	5.366667	09:19	Residential
AN17	7.116667	5.483333	12:30	Residential
AN18	7.000000	5.500000	09:19	Sparse vegetation
AN19	6.966667	5.566667	07:30	Church
AN20	7.083333	5.350000	11:56	School

Sampling sites were carefully selected to reflect the various ecological environments and land use patterns. Summarized result of the air quality and ambient noise level of the study area is presented as

shown in Table 6.6, while Appendix 6.1 contained detailed result. Particular attention was paid to CO_2 and N_2O , being components of Greenhouse Gases (GHG).

 Table 6.6: Summarized Air Quality Result

Comments					
NHO and FMEnv detection limit s					
ampling points were below					
shold value					
WHO and FMEnv detection limit this area is presumably due ogenic sources					
ampling points were below					
reshold value for both sections.					
shold value					
reshold value for both sections					

*ND= Not Detected

6.2.5 Ambient Noise Level and Electromagnetic Fields (EMF)

6.2.5.1 Noise Quality Measurement

Noise is a periodic fluctuation of air pressure causing unwanted sound. Apart from causing disturbance to the affairs of man, long term exposure to excessive noise can damage health and have psychological effects (SIEP, 1995). The effects of noise on residents generally relate to the annoyance/nuisance caused by the short- and long-term high noise levels. Also, disturbance to wildlife is significant especially during breeding seasons and/or when rare species are present. The rate at which these fluctuations of air pressure occur is the frequency, expressed in hertz (cycles per second). The range of sound pressures encountered is very large and to keep numbers in manageable proportions, noise levels are measured in decibels (dB), which have a logarithmic scale. Most legislations and measurements refer to the 'A' frequency weighting, dB(A) which covers the range audible to the human ear. A 10dB (A) typically represents a doubling of loudness.

Sound pressure or acoustic pressure is the local pressure deviation from the ambient (average, or equilibrium) atmospheric pressure caused by a sound wave. Sound pressure in air can be measured using a microphone, and in water using a hydrophone. The SI unit for sound pressure p is the Pascal (symbol: Pa). Sound pressure level (SPL) or sound level is a logarithmic measure of the effective sound pressure of a sound relative to a reference value. It is measured in decibels (dB) above a standard reference level. The commonly used "zero" reference sound pressure in air is 20µPa RMS, which is usually considered the threshold of human hearing (at 1 kHz). Noise levels are usually altered during installation and servicing of the transmission line. The regulatory limit for noise provided by the FMENV. is specific to the workplace (90dB (A). However, noise due to construction and installation of the transmission line and associated facilities are expected to rise. The IFC, WHO and FMEnv.limitsshall be used to benchmark the ambient noise levels measured in the project area. The WHO guideline for community noise is in Chapter 2.

Noise measurements were conducted in accordance with IFC 2012 standard. The document implies measurement of noise with respect to the various micro-habitats present in a given area. In this study the micro-habitats present are houses, farmlands, religious grounds and hospitals. The ambient noise level was measured in different stations (selection criteria was earlier explained) with the aid of a hand-held Pulsar Sound Level Meter about 1.9 m high during the day and night. Night measurements were imperative since trucks are also expected to move at night-time. This meter has a Liquid Crystal Detector (LCD) where readings are displayed for observation. The noise level was read off from the LCD after about 2 to 3 minutes of display. It is expected that the measured ambient noise levels and the regulatory

guidelines will be the standards against which noise will be assessed during the course of constructing the transmission line.

6.2.5.2 Electromagnetic Fields (EMF)

EMF is a combination of invisible electric and magnetic fields of force. They are generated by natural phenomena like the Earth's magnetic field but also by human activities, mainly through the use of high voltage power lines. Electric utility workers typically have a higher exposure to EMF than the general public due to working in proximity to electric power lines.

Exposure to EMF above 0.3μ T to 0.4μ T causes acute health issues such stimulation of peripheral nerves and muscles, shocks and burns; elevated tissue temperatures and childhood leukemia (ICNIRP, 2003).

6.2.5.3 Noise Quality and EMF Result

Table 6.7 shows the summarized result of noise and EMF measurement, while Appendix 6.1 presents detailed result for both noise level and EMF respectively.

PARAMETERS	۹LA		IHIALA-	- ONITSHA				
	MAX.	MIN.		MEAN	MAX.	MIN.	MEAN	
NOISE	65.0	55.7	,	60.5	67.6	57.8	60.6	
LAF (dBA)	71.3	51.8		64.3	75.5	51.0	65.9	
LMIN. (dBA)	31.6	23.4		27.6	28.9	22.4	26.4	
LMAX. (dBA)	73.0	42.0		61.5	61.0	42.3	54.0	
EMF	0.28	0.28	}	0.28	0.27	0.26	0.26	
WHO/FMEnv Regulatory dai	ly limit for	Noise	Э		L	•		
General Noise Level limit			- 105 db.(A) per hour or 90dB(A) per day					
			for prolonged exposure					
School			45 (day) 35 (night)					
Hospital	30 for day and Night							
Residential	45 for Day and 35 for Nighttime							
Farmlands			40 for Day and 45 for Night					

Table 6.7: Noise and EMF Measurements in the Study Area

* EMF was measured at 50Hz

Source: GNL survey, 2019

The results as presented in Table 6.7 indicated an elevated noise level above the daytime threshold stipulated for the various environments (school, hospital, residential and farmlands) for all the sections. However, these results were within the general noise level of short exposure of 105dB (A) or that of prolonged exposure of 90dB (A) and compared favorably well with the obtained secondary data.

6.2.6 Geology and Pedology

6.2.6.1 Geology

Three main rock types form the geology of Nigeria. These are the Precambrian basement with crystalline metamorphic-igneous-volcanic rocks; Mesozoic basement with tertiary sediments, granites/volcanic and The Quaternary alluvial deposits. Figure 6.5 shows the regional geologic map of Nigeria.

Source: Ajibade (1983)

Figure 6.5: Geologic Map of Nigeria Showing the Study Area

Abia State has two principal geological formations in the state namely Bende-Ameki and the Coastal Plain Sands otherwise known as Benin Formation. The Bende-Ameki Formation of Eocene to Oligocene age consists of medium–coarse-grained white sand stones. The late Tertiary-Early Quaternary Benin Formation is the most predominant and completely overlies the Bende Ameki Formation with a southwestward dip. The Formation is about 200m thick. The lithology is unconsolidated fine-medium-

coarse-grained cross-bedded sands occasionally pebbly with localized clay and shale. The two principal geological Formations have a comparative groundwater regime. They both have reliable groundwater that can sustain regional borehole production. The Bende-Ameki Formation has less groundwater when compared to the Benin Formation. The numerous lenticular sand bodies within the Bende- Ameki Formation are not extensive and constitute minor aquifer with narrow zones of sub-artesian condition. Specific capacities are in the range of 3 - 6 m³/hr. On the other hand, the high permeability of Benin Formation, the overlying lateritic earth, and the weathered top of this Formation as well as the underlying clay shale member of Bende-Ameki series provide the hydrogeological condition favouring the aquifer formation in the area.

The Benin Formation of coastal plain sands underlies Imo State. This formation, which is of late Tertiary age, is rather deep, porous, infertile and highly leached. In some areas like Okigwe, impermeable layers of clay occur near the surface, while in other areas, the soil consists of lateritic material under a superficial layer of fine-grained sand. Rivers are few with vast interfluves that are characterized by dry valleys that carry surface drainage in periods of high rainfall. The main streams draining the state are Imo, Otamiri, Njaba and Ulasi rivers, all of which have very few tributaries. With the exception of Imo River, this runs through the area underlain by the Imo Shales, other rivers rise within the coastal plain sands. Generally, river valleys constitute the major physical features, which are often marshy. The undulating nature of the interfluves gives rise to numerous depressions especially in the northeast of the State.

Anambra State lies in the Anambra Basin and has about 6,000 m of sedimentary rocks. The sedimentary rocks comprise ancient Cretaceous deltas, somewhat similar to the Niger Delta, with the Nkporo Shale, the Mamu Formation, the Ajali sandstone and the Nsukka Formation as the main deposits. On the surface the dominant sedimentary rocks are the Imo Shale a sequence of grey shales, occasional clay ironstones and Sandstone beds.

The Imo Shale underlies the eastern part of the state, particularly in Ayamelum, Awka North, and Oruma North LGAs. Next in the geological sequence, is the Ameki Formation, which includes Nanka Sands, laid down in the Eocene. Its rock types are sandstone, calcareous shale, and limestone in thin bands. Outcrops of the sandstone occur at various places on the higher cuesta, such as at Abagana and Nsugbe, where they are quarried for construction purposes. Nanka sands out crop mainly at Nanka and Oko in Orumba North LGA.

Lignite was deposited in the Oligocene to Miocene; and it alternates with gritty clays in places. Outcrops of lignite occur in Onitsha and Nnewi. The latest of the tour geological formations is the Benin Formation or the coastal plain sands deposited from Miocene to pleistocene. The Benin Formation consists of yellow

and white sands. The formation underlies much of Ihiala LGA. Thick deposits of alluvium were laid down in the western parts of the state, south and north of Onitsha in the Niger and Anambra river floodplains.

6.2.6.2 Pedology

According to FAO soil taxonomy legends; there are thirteen (13) major soil types in Nigeria, which are all influenced by the climatic and vegetation zones of the country. This is expected because the degree of available moisture in the soil is an important factor in soil reactions, fertility and productivity. In general, the soils of Nigeria are divided into four main groups. These are:

- the ferruginous tropical soils on crystalline acid rocks which occupy about two-fifth of the area to the south, south-west and south-east;
- the brown soils and latosols of the northern half;
- the brown and reddish-brown soils in the north eastern corner; and
- the juvenile and hydromorphic soils which occur along the alluvial channel complexes. The soils largely reflect the influence of parent materials. Intensive use of the soils and the addition of manure and chemical fertilizers have altered their character, profile, texture, structure and chemical characteristics. Soil types in Nigeria are shown in Figure 6.6.

Figure 6.6: Soil Zones and Types in Nigeria in Relation to the Project Location

Soil of the project area is characterized by the following features:

- Dark reddish brown to red
- Soil texture ranged from loamy sand to sandy clay loam soils
- Clay content ranged from 70 290gkg-1 and increased with depth
- Silt vary irregularly with depth from 50 90
- Fine sand also varies irregularly from 300 390gkg-1 and
- Coarse sand irregularly with depth from 290 450gkg-1 soil.
- The total sand (gkg-1) generally decreased with depth ranging from 640 840gkg-1.

Source: Agriculture Nigeria, ND, 2006

6.2.6.3 Assessment of Soil Quality

This soil is a very important component of the environment. Several activities of the transmission line project shall negatively impact the soil. These include; Potential erosion from vegetal clearing and creation of foundations for tower; soil pollution and contamination from accidental oil & fuel leak from construction machineries and vehicles for transport of construction materials equipment. More so, the disposal of solid wastes by camp workers and migrants may contaminate the soil.

6.2.6.4 Methodology

The soil sampling locations were distributed, marked out and geo-referenced. The choice for sampling points took into consideration the various land use systems and natural features of the area. These included forest areas, commercial farmlands, uplands, lowlands and water courses. The grid method of soil sampling stations is as recommended by the International Institute of Tropical Agriculture. A total of twenty (20) sampling stations were established in the study area (Same point as Air quality/Noise). A stainless steel, handheld Dutch type Soil Auger was used to collect representative soil sample at each soil sampling station. At each sampling station, soil depth (0-15 cm and 15-30 cm for topsoil and sub soil levels respectively. Soil samples for physical and nutrient elements analyses were sub sampled and appropriately labeled using masking tape and indelible ink to indicate sample location and soil depth level. Soil samples for hydrocarbon contents analyses were collected into amber glass bottles and labeled appropriately also using masking tape and indelible ink. Plate 6.2 shows soil sampling activities.

Plate 6.2: Field Soil Sampling Activity

6.2.6.5 Assessment of Soil Quality

Table 6.8 is a summary of the physico chemical characteristics of the soil of the project area. Detailed results ispresented in Appendix 6.2.

All physico-chemical parameters measured in the soil samples were within WHO/FMEnv threshold values for contamination except for PCB. PCB concentrations were specifically high in the Aba and Onitsha section of the project area. Possible sources of PCB in soils of these areas are spent oils and condemned refrigirators sampled at repairers' shop. Data obtained for all parameters are slightly in conformity with those reported in the secondary data (Ojanuga et al., 1981; (FDALR) 1990; Nuga and And, 2011; Chukwu, 2013 and Nuga & And, 2011; Ejikeme and Nweke, 2016).

Table 6.8: Summarized physico chemical results of Soils

0-15cm							15-30cm						WHO/FMEnv	
		Alaoji-Ihiala			Ihiala-Onitsha			Alaoji-Ihiala			Ihiala-Onitsha			limits
Parame	ters	Min	Max	Averag	Min	Max	Avera	Min	Max	Avera	Min	Max	Avera	
				е			ge			ge			ge	
PH		6.59	6.78	6.69	6.65	6.87	6.76	5.44	5.52	5.49	5.47	5.52	5.50	5 – 8.0
Elect.		78.1	92.6	85.4	80.1	93.9	86.0	107.9	175.4	145.0	115.	187.6	149.2	
Conduc	tivity										7			
(µS/cm)														
Moisture	Э	6.5	13.5	11.0	9.1	13.0	10.9	13.0	17.0	14.8	13.6	18.2	15.7	
Content	(%)													
PSD	Clay	1	1	1	1	1		1.88	3.11	2.47	2.22	3.16		
(%)	Silt	4.3	17.5	10.5	2.3	25.1		5.9	16.3	12.2	9.0	17.8		
	Sand	83.9	93.5	88.9	88.4	94.4		78.6	102.8	88.3	79.6	97.7		
PCB	•	52	65	56.2	52	59	56.1	23	52	32	21	59	37	50
Ext. nitra	ate	3.23	4.77	4.30	3.47	5.40	4.03	4.1	6.9	5.2	4.5	6.6	5.6	500
Ext. sulp	ohate	24.4	25.6	25.0	23.8	26.2	25.0	21.8	23.8	22.9	21.8	23.4	22.8	500.00
Ext. pho	sphate	0.03	3.41	1.53	0.51	2.39	1.39	1.32	3.00	2.22	0.96	3.60	2.10	
Phosph	orus	6.1	20.1	13.9	8.4	17.0	14.6	6.0	21.5	13.7	10.7	17.5	14.3	

Calcium	3.93	6.89	5.47	3.69	6.59	5.30	1.66	6.05	4.28	1.95	6.89	3.75	
Magnesium	0.50	0.91	0.70	0.55	0.98	0.69	0.46	1.15	0.75	0.44	1.03	0.77	0.10-1.0
THC	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	30.00
Total chromium	0.74	0.98	0.86	0.51	1.09	0.87	0.87	2.07	1.48	1.13	1.88	1.48	100.00
Total iron	64.2	99.0	84.3	73.7	99.3	84.9	103.0	138.7	120.7	106.	141.1	121.9	500-30000
										8			
Copper	5.84	8.76	7.09	6.93	10.14	7.86	4.70	9.73	7.72	4.78	8.74	7.21	36.00
Lead	0.15	0.29	0.24	0.14	0.30	0.23	0.03	0.27	0.16	0.16	0.26	0.21	85
Manganese	5.26	6.50	6.00	5.34	7.19	6.57	5.63	9.67	7.88	6.62	10.00	7.66	
Nickel	0.39	0.82	0.63	0.58	0.73	0.66	0.70	1.08	0.94	0.73	1.20	0.95	35.00
Zinc	1.05	1.31	1.19	1.18	1.25	1.21	0.71	1.97	1.21	0.32	2.11	1.20	
Arsenic	0.23	0.33	0.28	0.20	0.35	0.28	0.24	0.47	0.37	0.23	0.41	0.32	
Mercury	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.30
Vanadium	0.22	0.30	0.25	0.20	0.31	0.24	0.22	0.37	0.28	0.22	0.38	0.28	
Cadmium	0.29	0.66	0.47	0.26	0.49	0.38	0.15	0.90	0.52	0.29	0.78	0.56	
Boron	0.79	1.84	1.44	1.06	1.84	1.51	0.87	2.33	1.49	1.21	2.09	1.67	

Geomatics Nigeria

6.2.6.7 Soil Microbial Results

Soil microbial results of the study area is presented in the Appendix 6.2, summarized soil microbial waste matrix of the study area is presented in Table 6.9.

Species	Broad spectrum media nutrients	Possible Substrate in Project			
		Area			
Bacillus sp	Nitrogen, carbohydrate	Meat, Groundnut, bread			
Pseudomonas sp	vitamins, carbohydrates, nitrogen, and	Egg, bean and meat			
	salts				
Micrococcus sp	vitamins, carbohydrates, nitrogen, and	Rice, corn and bread			
	salts				
Escherichia sp	Sodium, chlorine, nitrogen	Meat, Groundnut, bread			
Klebsiella sp	Nitrogen, carbon and sodium, ammonium	Egg, bean and meat			
	phosphate				
Protues sp	Nitrogen, vitamins, lactose	Meat, Groundnut, bread Egg,			
		bean and meat			
Serriatia sp	Sodium, chlorine, nitrogen	Rice, corn and bread			
Staphylococcus sp	vitamins, carbohydrates, nitrogen, and	Meat, Groundnut, bread			
	salts				
Enterobacter sp	Sodium, chlorine, nitrogen	Meat, Groundnut, bread Egg,			
		bean and meat			
Arthrobacter sp	Nitrogen, carbohydrate	Cassava tubers, corn			
Actinomyces sp	Propionic acid, sodium salt, nitrogen	Meat, Groundnut, bread			
Flavobacterium sp	Proteosepeptone, Casamino acids,	Meat, fish, cheddar cheese			
	Yeast extract, Dextrose, Soluble starch,				
	Dipotassium phosphate, sulfate Sodium				
Chromobacterium	Nitrogen, glutamic acid, peptone	Meat, Groundnut, bread Egg,			
sp		bean and meat			
Cladosporium sp	Sodium, chlorine, glucose,	Meat, Groundnut, bread Egg,			
		bean and meat			

Table 6.9: Microbial – Waste Substrate Matrix

Mucor sp	Magnesium Sulfate, Monopotassium	Rice, beans and soya bean		
Trichoderma sp	Phosphate, Peptone, glucose, Sodium,	Yam, potatoes, Sugarcane, corn		
	potassium, iron, calcium	and wheat straw		
Fusarium sp	Sodium, potassium, iron, calcium,	Meat, Groundnut, bread Egg,		
Rhizopus sp	glucose	bean and meat		
Candida sp				
Aspergillus sp				
Penicillium sp				

Microbial diversity of the study area was largely uniform indicating similar substrate except for the presence of Chromobacterium sp and Cladosporium. Their presence could best be explained by the consumption of their preferred growth media as outlined in Table 6.9. All microbial species assayed in the soil samples are important in nutrient recycling. Microbial organisms in soil aid the degradation of wastes and contaminants, soil enrichment through nitrogen fixation for instance, etc. The presence of the broadspectrum micro organisms in the project/study area is the ability of the soio to self enrich and break down contaminats in the eventual incident of improper waste disposal or accidental spill among others.

6.2.7 Groundwater Quality

6.2.7.1 Sampling Methodology

Water samples were collected from three existing boreholes. Two of these boreholes were within the sampling corridor while the third was obtained outside the spatial boundary and hence acted as control. Collected water samples were analysed for their baseline physico-chemical condition. Water samples were collected for laboratory analyses using

- 2-litre plastic bottle for water samples for physicochemical analysis;
- 2-litre plastic bottle for water samples for heavy metal analysis;
- 1-litre plastic bottle for water samples for microbiological analysis; and
- 1-litre glass bottle with Teflon seal cap for water samples to be analysed for hydrocarbon content (oil and grease, etc.).
- Samples were kept in cooler loaded with ice blocks, while samples meant for metal analysis were
 preserved by the addition of concentrated nitric acid (5 ml to 1 L of water). Parameters like pH,
 temperature, electrical conductivity (EC) and depth were measured on *in-situ*. The pH, conductivity and

total dissolved solid (TDS) were measured with pH-conductivity-TDS meter (COMBO HI model 98130). Plate 6.3 shows the water sampling activity.

Plate 6.3: Groundwater Sampling Activity Near Ugheli Substation

6.2.7.2 Groundwater Sampling Stations and Coordinates

The groundwater sampling stations are presented in Figure 6.7.

Figure 6.7: Groundwater Sampling Stations and Coordinates

6.2.7.3 Assessment of Groundwater Quality

The results recorded for each physico-chemical parameter were benchmarked with those from reviewed secondary data and from WHO/FMEnv regulatory limit, where one exists (Table 6.10).

Table: 6.10: Physico – chemical	Results for Groundwater
---------------------------------	--------------------------------

		Ala-	Onitsha	Ihiala	Secondary	FMEnv	WHO
		ojiSubsta	Substatio	Substatio	Data	limits	limits
		tion	n	n	(Ukanafun –		
Parameters	S	GWI	GW2	GW3	Oma Power		
					Plant Gas		
					Pipeline		
					Project 2016)		
General ap	pearance	Clear	Clear	Clear	Clear		Clear
						Clear	
pH @ 21.2	оС	6.31	7.41	6.92	4.7	6.5- 8.5	6.5-
							9.2
Temperature (0C)		26.32	25.23	28.5	31.0		40 oC
Turbidity (N	NTU)	1.05	1.32	1.83			5
TDS (mg/l)		39.40	11.43	31.28	10.6		
Conductivit	ty (µS/cm)	58.21	40.25	59.12	20.0	1,000	250
Total Hardi	ness (mg/l)	6.23	3.25	4.23		150	
THC		ND	ND	ND		0.3	0.05
PCB (ng/m3)		ND	ND	ND			0.003
Mineral Oil (mg/l)		<1.00	<1.00	<1.00			
Chloride (mg/l)		11.6	4	10			
Total Alkalinity (mg/l)		<1.00	<1.00	<1.00	2.0		
Nutrients	Nitrate (mg/l)	2.52	0.64	1.82	<1.00	50	10

	Phosphate	0.25	0.15	0.31			5
	(mg/l)						
	Sulphate (mg/l)	0.36	0.24	0.33	0.28	100	500
Reactive S	ilica (mg/l)	7.4	11.3	10.5			
Cyanide (n	ng/l)	<0.01	<0.01	<0.01			
Ammoniun	n (mg/l)	<0.02	<0.02	<0.02			
Aluminum	(mg/l)	<0.10	<0.10	<0.10	<0.01		
Calcium (n	ng/l)	0.32	2.13	2.15			
Magnesiur	n (mg/l)	1.48	0.43	0.52			
Sodium (m	ng/l)	2.36	8.67	4.63	4.08		
Potassium		0.41	0.39	0.7			10
Cyanide (n	ng/l)	<0.01	<0.01	<0.01			
Heavy	Arsenic (mg/l)	<0.001	<0.001	<0.001			
Metals	Total Mercury	<0.0002	<0.0002	<0.0002			
	(mg/l)						
	Selenium	<0.001	<0.001	<0.001			
	(mg/l)						
	Lead (mg/l)	<0.01	<0.01	<0.01	0.007	0.05	0.02
	Zinc (mg/l)	0.14	0.17	<0.05			
	Total Iron	<0.05	<0.05	0.27		1.0	0.3
	(mg/l)						
	Copper (mg/l)	<0.05	<0.05	<0.05	0.16	1.0	2.0
	Manganese	<0.10	<0.10	<0.10			
	(mg/l)						
	Cadmium	<0.002	<0.002	<0.002			
	(mg/l)						

Geomatics Nigeria

	Total	<0.01	<0.01	<0.01		
	Chromium					
	(mg/l)					
	Cobalt	0.01	0.03	0.02		
	Vanadium	ND	ND	ND		
Total Coliform (cfu/100ml)		0	2	6.8x107		
Faecal Coliform (cfu/100ml)		0	0	5.3x105		
E-coli (cfu/100ml)		0	0	0		
Faecal	Streptococci	0	0	0		
(cfu/100ml)						
Total Plate Count (cfu/ml)		3.19x102	7.20x103	2.19x102		

Source: GNL. ND = Not Detected; NA= Not Available

As shown in Table 6.10 all physico chemical parameters analyzed in the groundwater samples were within threshold values.

6.2.8: Hydrology and Drainage

6.2.8.1 General

Nigeria has two major Rivers, the Niger, after which the country is named, and the Benue. They meet at the Lokoja confluence and enter the Gulf of Guinea through a network of creeks and distributaries which form the Niger Delta. There are, however, a few other tributary rivers which drain into the Niger-Benue trough and Lake Chad. These include the Sokoto-Rima, Kaduna, Anambra, Gongola, Hadejia, Jama'are and Yobe rivers. The basins of these major rivers and their tributaries constitute the drainage pattern of the entire country. Other major rivers e.g. Cross, Imo, Ogun, Osun, Benin, Qua Iboe etc. empty directly into the Atlantic Ocean. The majority of small rivers are seasonal (Figure 6.8).

Figure 6.8: Nigeria Drainage System

The Principal rivers are the Njaba and Imo rivers. They cut through the two states and are more prominent in the southern part of Abia and the Eastern part of Imo. The Imo River flows from Imo through Abia and empties into the Atlantic Ocean through the Niger delta Estuary.

Hydrogeology

The Benin Formation (Coastal Plain Sands) is the major aquiferous layer in the project area. Lithologically, it is made up of coarse- to medium-grained loose sands and gravels. Thin clay hori- zons and lenses occur in places disturbing the vertical and horizontal disposition of the aquifer, giving rise to a multiaquifer system. The aquifer may reach about 300 m in thickness. This aquifer is underlain by thick shale (aquiclude) in the northern sector. A lower sand aquifer underlies the aquiclude. The Alluvial Deposit aquifer overlies the Benin Formation in the southern parts of the area. The thickness of these aquiferous layers varies from place to place. Presently, only the Coastal Plain Sand aquifer is being tapped. Some hydrogeological data for this unit are as follows: total depth of boreholes, 42-172 m; saturated thickness of aquifer, 39-100 m; static water

level, 1-55 m; Yield, 216-5,304 m³/d; transmissivity, 200-8,300 m²/d; hydraulic conductivity, 2-28 m/d; drawdown, 1.2-42.5 m; and storage coefficient, 0.10-0.25 (Edet, 1993).

6.2.9 Surface Water Quality

6.2.9.1 Sampling Methods

Surface Water

Surface water was collected as appropriate using non isokinectic water sampler. Figure 6.9 shows the sampling locations for surface water, sediments and hydrobiology. Surface water sampling involved immersion of the laboratory cleaned sample bottle below the surface of the water body. The exercise also involved *in situ* measurement of salinity, temperature, turbidity, pH, dissolved oxygen and conductivity. These were stored and preserved as appropriate for each analysis. Water samples were collected for laboratory analyses using

2-litre plastic bottle for water samples for physicochemical analysis;

2-litre plastic bottle for water samples for heavy metal analysis;

1-litre plastic bottle for water samples for microbiological analysis; and

1-litre glass bottle with Teflon seal cap for water samples to be analysed for hydrocarbon content (oil and grease, etc.).

All water samples were preserved in ice blocked loaded boxes in the field and refrigerators at the camp site prior to transmission on ice loaded coolers to Mifor Consult Nigeria Limited (MCNL) Laboratory in Calabar. Samples meant for metal analysis were preserved by the addition of concentrated nitric acid (5 ml to 1 L of water). Parameters like pH, temperature, electrical conductivity (EC) and depth were measured on *in-situ*. The pH, conductivity and total dissolved solid (TDS) were measured with pH-conductivity-TDS meter (COMBO HI model 98130).

Sediment

The Eckman grab was deployed in the collection of sediment samples. The grab is made up of stainless steel that consists of two jaws that automatically closes when it is lowered into the river. On reaching the bottom of the water body, sediment is trapped in the jaws and is gradually pulled back to the surface. A single grab bite was collected per station. The surface of sediment (1 - 2cm) were collected in a stainless-steel basin and

homogenized for the analysis of physico-chemical parameters and Total Hydrocarbon Content (THC). The residual sediment was washed for benthos and collected in a plastic container, while any residual sediment was thrown back into the river.

Samples for physico-chemical analyses were collected in polythene bags and stored for analysis. In-situ measurements such as pH, and temperature were carried out on sediment samples. The sediment samples for microbial analyses were collected in sterile plastic containers and stored in coolers containing ice block. After each sampling, the grab samples were washed thoroughly to remove any adhering particles from previous sampling.

Figure 6.9: Surface Water, Sediment and Hydrobiology Sampling Points

6.2.10 Hydrobiology

6.2.10.1 Benthic Macro Fauna Sampling

Benthos were obtained by washing residual sediment samples through a 0.5 mm-mesh sieve using water obtained from the river at the site. This was carried in a manner so as not to destroy the integrity of the benthic organisms. The benthos samples obtained were placed in a plastic container and preserved in 20% buffered formal saline solution and stored in the ice coolers. After each sampling, the Eckman Grab was washed thoroughly with water from the river to remove remaining particles from previous sampling.

6.2.10.2 Plankton Sampling

Zooplankton

As part of the procedures taken to determine the type and nature of small living organisms surviving on the surface of the water, a zooplankton sampling exercise was conducted. Zooplankton samples were collected by pulling plankton net of mesh size of 0.063mm vertically on the surface of the river. A weight (iron rod) was attached to the cord holding the net, lowered into the water and then pulled back to the surface for collection of samples. After each tow, zooplankton were collected using labeled wide mouth plastic containers and preserved with 10% buffered formalin, the net was thoroughly washed so that particles adhering to the net was washed into the collecting bottle for analysis.

Phytoplankton

Phytoplankton sample collection was done by lowering the plankton net just below the water surface and dragged (horizontally) on the waterway. The phytoplankton samples were collected in clearly labeled containers and preserved in Lugol's iodine solution.

6.2.10.3 Fishery Methodology

Data for fishery studies were collect from professional observation in the water bodies, nearby markets and desktop studies. This was so because neither fishing camp nor fishermen were found in the project area. Fish observed and identified were photographed as part of the primary data source, while secondary data source involves literature review of past fish studies conducted within the area.

Data on fish and fisheries resources, daily landings and sales were generated by discussing with observed

fisherfolks in the area.

6.2.10.4 Result of Hydrobiology

Two of the sampling stations (SW9 and SW10) were devoid of plankton or benthic organisms. A total of eighty-nine (89) species were observed in the study from SW 1-8. The breakdown includes; thirty-two (32) phytoplankton, thirty-six (36) zooplankton and twenty (20) macro benthos. Details are provided in Tables 6.11 – 6.13.

S/N	Species	Group/CI	Family	SW							
		ass		1	2	3	4	5	6	7	8
1	<i>Melosira</i> sp	Diatom	Melosiraceae	13							
2	Melosira nummuloides	Diatom	Melosiraceae		12		15	8		8	4
3	Navicula sp.	Diatom	Naviculaceae	22				2			
4	Surirella nobilis	Diatom	Bacillariophyceae		10	14		6	17	9	
5	Nitzschia obtustata	Diatom	Bacillariophyceae		13			5	8		4
6	Nitzschia linearis	Diatom	Bacillariophyceae		12		14	6		7	8
7	Coscinodiscus eccentricus	Diatom	Coscinodiscaceae		21	22		4	23		8
8	Micrasterias denticulate	Green algae	Chlorophyceae		24	19	15			12	
9	Closterium lunula	Green algae	Chlorophyceae		10		12	6		17	7
10	Cosmarium sp.	Green algae	Chlorophyceae					4			

Table 6.11: Phytoplankton Assemblage across All Sampling Stations

11	Ankistrodesmus	Green	Chlorophyceae	4			16	4	6	11	
	falcatus	algae									
12	Scenedesmus sp.	Green	Chlorophyceae	21	25	17		7			8
		algae									
13	<i>Eudorina</i> sp.	Green	Chlorophyceae	30		21	29		21	9	
		algae									
14	Volvox sp.	Green	Chlorophyceae		8			4	13		8
		algae									
15	Ulothrix sp.	Green	Chlorophyceae	22				8			6
		algae									
16	Trachelomonas	Green	Euglenophyceae	24	22		21	7		9	9
	lacustris	algae									
17	Phacus caudatus	Green	Euglenophyceae			18	12	4	17	15	5
		algae									
18	Tetraspora	Green	Chlorophyceae	24			15	7		9	
		algae									
19	Microcystis	Blue-	Chroococcaceae		9			9	7		9
	aeruginosa	green									
		algae									
20	Oscillatoria	Blue-	Oscillatoriaceae	10	2	10		2	7	18	
	limnetica	green									
		algae									
21	Anabaena	Blue-	Nostocaceae			12			8		
		green									
		algae									
22	Centritractus	Dinoflagell	Xanthophyceae				10	4		8	8
	dubius	ate									

23	Peridinium	Dinoflagell	Dinophyceae	9	2			2			
	cinctum	ate									
24	Phacus caudatus	Green	Euglenophyceae	10		14			14	2	
		algae									
25	Pleurosigma	Diatom	Naviculaceae		33			6			5
	elongatum										
26	Scenedesmus sp.	Green	Chlorophyceae					4	18		12
		algae									
27	Surirella nobilis	Diatom	Bacillariophyceae				17	6		7	
28	Surirella splendid	Diatom	Bacillariophyceae				17		7		
28	Tetraspora sp	Green	Chlorophyceae	12		16		4	9	6	2
		algae									
30	Trachelomonas	Green	Euglenophyceae	18		10	9		32	4	
	lacustris	algae									
31	Ulothrix sp.	Green	Euglenophyceae	10		16		9	19		12
		algae									
32	Volvox sp.	Algae	Green algae		20				7		
	Total abundance	l		229	223	189	202	128	81	81	233
	Total number of sp	ecies		14	15	12	13	24	19	17	17
	Shannon index			2.53	2.53	2.46	2.52	3.10	2.71	2.67	2.70
				0.8	0.9	0.9	0.9	0.8	0.9	0.9	
	Evenness_e^H/S	venness_e^H/S				712	547	268	797	033	288

Table 6.12: Zooplankton Assemblage across All Sampling Stations

S/N	Species	Phylum/	Group/Class	Family	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
		Division										
1	Euchlanis sp.	Rotifer	Monogononta	Euchlanidae	9				5			
2	Brachionus	Rotifer	Monogononta	Brachionidae	4		15		8	4		
	falcutus											
3	Lepadella ovalis	Rotifer	Monogononta	Collurellidae	7		6		6			
4	Moina micrura	Arthropoda	Cladocera	Moinidae	12				12		2	
5	Kurzia longirostris	Arthropoda	Cladocera		5				7			
6	llyocryptus	Arthropoda	Cladocera	Macrothricidae	3							
	verrucose											
7	Nauplius larvae	Arthropoda	Copepoda		16	9			4	14	12	8
8	Meta-nauplius	Arthropoda	Copepoda			8			6	7		5
	larvae											
9	Metacyclops	Arthropoda	Copepoda			12			5			
	minutes											
10	Microcyclops	Arthropoda	Copepoda			5		11	11			
	varicans											
11	Bryocamptus	Arthropoda	Copepoda			8	7	12				
	birsteini											
12	Gastropod larvae	Mollusca	Gastropoda			2						
3	Fish larvae	Chordata	Pisces			1					3	

14	Diaphanosoma	Rotifer	Monogononta	Sididae		6		3			
	excisum										
15	Lecane leontina	Rotifer	Monogononta	Lecanidae		7		8			
16	Labidocera	Arthropoda	Copepoda			3			10		
	acutifrons										
17	Oithona setigera	Arthropoda	Copepoda	Oithonidae		5					2
18	Eucyclops	Arthropoda	Copepoda				10				
	macrurus										
19	Keratella quadrata	Rotifer	Monogononta	Brachionidae				3			2
20	llyocryptus	Arthropoda	Cladocera	Macrothricidae				9			
	verrucose										
21	Evadne spinifera	Arthropoda	Cladocera	Polyphemidae					6		
22	Platyias	Rotifer	Monogononta	Brachionidae							
	quadricornis										
23	Paracalanus	Arthropoda	Copepoda	Paracalanidae							
	parvus										
24	Brachionus	Rotifer	Monogononta	Brachionidae						4	6
	calyciflorus										
25	Lepadella patella	Rotifer	Monogononta	Collurellidae							
26	<i>Eurytemora</i> sp	Arthropoda	Copepoda	Temoridae							
27	Polychaete larvae	Annelida	Polychaeta							8	
28	Euterpina	Arthropoda	Copepoda						2		
	acutifrons										

29	Lecane bulla	Rotifer	Monogononta	Lecanidae						5		
30	Gastropod larvae	Mollusca	Gastropoda							4		
31	Microsetella	Arthropoda	Copepoda	Ectinosomidae						4		
	norvegica											
32	Temora	Arthropoda	Copepoda	Temoridae						2	2	
	longicornis											
33	Euchaeta	Arthropoda	Copepoda	Euchaetidae							8	
	norvegica											
34	Eucyclops	Arthropoda	Copepoda	Cyclopidae							2	
	serrutalus											
35	Oithona plumifera	Arthropoda	Copepoda	Oithonidae								3
36	Eucalanus	Arthropoda	Copepoda	Eucalanidae								3
	elongatus											
	Total number of ind	ividuals			56	47	49	45	87	46	31	58
	Total number of spe	ecies			7	8	7	4	13	7	6	10
	Shannon index				1.803	1.756	1.837	1.096	2.482	2.133	1.858	1.823
	Evenness_e^H/S				0.8666	0.8267	0.8964	0.9972	0.9204	0.8439	0.8011	0.8839

Table 6.13: Benthos Assemblages across All Sampling Stations

S/N	Species	Group/Class/Order	Family	SD1	SD2	SD3	SD4	SD5	SD6	SD7	SD8
1	Bulinus truncates	Gastropoda	Planorbidae	4							
2	Bulinus globosus	Gastropoda	Planorbidae	4	4						
3	Nais communis	Oligochaeta	Naididae	3	4			1		1	
4	Caridina Africana	Decapoda	Atyidae	2				1		1	
5	Macrobrachium sp.	Decapoda	Palaemonidae	2			3	1		2	
6	Chironomus sp.	Diptera	Chironomidae	2		2		2		1	
7	Lymnaea natalensis	Gastropoda	Lymnaeidae		4						
8	Dero digitate	Oligochaeta	Naididae		4						
9	Nais communis	Oligochaeta	Naididae		2				1		
10	Philaccolus sp.	Coleoptera	Dystiscidae		2						
11	Canthyporus sp.	Coleoptera	Dystiscidae		2						
12	Dero digitata	Oligochaeta	Naididae		2	4			1		
13	Tanypus sp.	Diptera	Chironomidae			2					
14	Cryptochironomus sp	Diptera	Chironomidae				5				
15	Melanoides	Gastropoda	Thiaridae					1			
	tuberculates										
16	Zyxomma sp.	Odonata	Libellulidae					1			
17	Pseudocloeon	Ephemeroptera	Baetidae					1			
	glaucum										

18	Nereis sp	Polychaeta	Nereidae						1		
19	Biomphalaria pfeifera	Gastropoda	Planorbidae							1	
20	Bulinus globosus	Gastropoda	Planorbidae							1	
	Total number of individ	luals		17	24	8	8	8	3	7	17
	Total number of specie	Total number of species				3	2	7	3	6	6
	Shannon index			1.742	2.023	1.04	0.6616	1.906	1.099	1.748	1.742
	Evenness_e [^] H/S			0.9518	0.9449	0.9428	0.9689	0.961	1	0.9571	0.9518

Note: Samples from SW9 and SW10 were both barren

Source: GNL survey, 2019

6.2.10.5 Phytoplankton Study

Phytoplankton species were only observed in sampling points 1-8. A total of thirty-two (32) species were recorded across all sampling points. The increased number of species and counts could be due to favourable environmental factors including warm water temperature, nutrients from agricultural runoff and cleaning fluids (Hoppenrath and Saldarriaga, 2012). The abundance of phytoplankton usually influenced availability of nutrient and light. *Trachelomonas lacustris Trachelomonas lacustris Scenedesmus* sp. *Micrasterias denticulate Coscinodiscus eccentricus Eudorina* spwere the dominant species in the samples. The presence of diatoms in water is indicative of possible pollution from anthropogenic sources such as fertilizers and nutrients runoff, leading to eutrophication (Blinn and Bailey, 2001) (Table 6.13).

6.2.10.6 Zooplankton Result

A total of thirty-seven (37) were observed in the samples. Copepoda was the dominant taxa in the samples. The presence of these zooplanktons in a high proportion is indicative of water body experiencing environmental stress and anthropogenic impacts.

6.2.10.7 Benthic Study

A total of twenty (20) species were observed in the samples. A pollutant tolerant species *Nereis sp.* was censored in sediments samples obtained in (SD7). Its occurrence suggests water bodies polluted by sewage, agricultural run-off and wastes. All other samples were devoid of pollution indicator species.

6.2.10.8 Surface Water Physico-Chemical Result

The physico-chemical characteristics of the surface water bodies within the proposed project areas are summarized in Table 6.14. The project area is served by the Imo, and Njaba Rivers.All physico chemical parameters analyzed in the water samples were within threshold values, except for Turbidity which had concentrations above FMEnv/WHO threshold limits for sustenance of aquatic lives in al sampling points and DO which had values below threshold limits in al sampling points except SW4 and SW9. Also, PCB values were found to be above the regulatory limit in surface water within Onitsha market. Possible cause of increase in PCB levels in the water bodies is runoff from PCB polluted soils around Onitsha and Aba markets since baseline soil PCB levels were also above FMEnv and WHO regulatory limits at these sites.

	Alaoji-I	hiala					Ihiala-Onitsha				Secondary	FMENV/WHO
PARAMETERS	SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8	SW9	SW10	Data	(2011) Limits
											Ukanafun –	for sustenance
											Oma Power	of Aquatic
											Plant Gas	Lives
											Pipeline	
											Project 2016	
РН	3.62	4.47	8.64	6.17	4.77	5.41	5.20	4.86	4.92	3.33	6.8	4.8-9.2
Temperature (oC)	30.5	26.6	26.7	28.6	31.8	26.8	26.8	31.0	29.9	27.0	29.0	40
Conductivity (µS/cm)	0.32	0.33	0.40	0.47	0.67	0.27	0.28	0.09	0.36	0.39	50.0	
Salinity (g/l)	0.92	1.36	0.93	1.29	1.77	1.88	1.41	2.14	0.60	1.46	8.0	
DO (mg/l)	3.85	1.75	3.58	4.19	3.57	3.70	3.82	3.59	4.66	2.34	5.42	4 - 9
Turbidity (NTU)	27.61	27.07	26.99	28.17	27.09	26.99	27.37	26.90	26.55	27.01		<u><</u> 25
Total Dissolved Solids (mg/l)	273.9	222.4	120.1	158.4	251.3	292.3	268.2	354.6	377.8	326.1	26.6	
Oil & Grease (mgl)	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00		
PCB (ppb)	0.4	0.3	0.2	0.4	0.3	0.3	1.1	1.0	0.8	1.2		0.5
BOD (mg/l)	5.64	5.01	4.85	5.33	5.18	3.13	4.36	5.43	4.27	4.88	5.31	<u><</u> 10
COD (mg/l)	4.77	5.78	5.33	5.01	3.38	4.92	2.03	5.26	3.73	3.86	6.0	40
Chloride (mg/l)	74.9	74.0	74.3	73.4	74.6	74.0	74.2	73.7	75.1	73.9		
Nitrate (mg/l)	0.28	0.31	0.40	0.34	0.41	0.37	0.36	0.41	0.39	0.34		50

 Table 6.14:
 Summarized Surface Water Physico-chemical Characteristics

Geomatics Nigeria

Phosphate (mg/l)	5.28	6.13	6.43	6.41	4.85	3.69	4.71	6.61	5.25	4.94		500
Sulphate (mg/l)	0.8	3.0	1.2	1.4	1.7	2.1	1.1	2.3	4.8	2.2		500
Phenol (µg/l)	0.025	0.028	0.030	0.031	0.019	0.033	0.031	0.038	0.028	0.023		
Magnesium (mg/l)	14.5	15.8	19.0	18.7	6.5	9.0	10.2	7.7	13.6	10.0	4.07	200
Potassium (mg/l)	4.02	2.36	6.42	2.86	0.81	4.81	5.68	3.57	3.24	4.16	0.51	10
Sodium (mg/l)	1.4	10.5	7.9	5.5	2.0	12.7	9.4	5.4	10.6	8.8	4.95	200
Calcium (mg/l)	6.89	4.35	2.37	5.23	4.23	6.36	9.78	1.03	6.02	5.95	80.11	200
Chromium (mg/l)	0.280	0.269	0.268	0.268	0.275	0.264	0.272	0.271	0.277	0.266	<0.01	50
Manganese (mg/l)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.01	100
Lead (mg/l)	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.01	25
Zinc (mg/l)	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	1.30	5000
Copper (mg/l)	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	<0.20	2.36	1500
Total Iron (mg/l)	1.06	1.40	1.47	0.53	1.17	1.23	1.25	1.24	1.99	1.59		300
Nickel (mg/l)	0.92	1.44	1.23	1.05	1.21	1.25	1.06	0.51	1.08	1.02		88
Silver (mg/l)	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10	<0.10		
Cobalt (mg/l)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		
Cadmium (mg/l)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.05	0.03

*ND= Not Detected

Source: GNL Survey, 2019

6.2.10.9 Surface Water Microbiology

The densities and taxa of microorganisms in the water bodies within the project environment are presented in Table 6.15 while the substrate matrix for surface water microbial species is presented in Table 6.16. Surface water microbiology studies was conducted to further reveal the quality of the water bodies in the project area with regards to ecological sustainability. The presence of pollution indicator species and their abundance could reveal the pollution state of a water body. The presence of various microbial organisms and the microbial load of the surface water is also an indication of capability of the water body to breakdown contaminants,Possible sources of contamination in surface water bodies include domestic waste materials such as meat, strawberries, cereal grain and nuts mold in vegetables and peanuts as reported by Sridhara et al (1990).

Table 6.15: Surface Water Microbiology Result

	Total Heterotrophic Bacteria	Count	Hydrocarbon	Count	Total Heterotrophic	Count	Hydrocarbon	Count
	(THB)	(cfu/ml)	utilizing Bacteria	(cfu/ml)	Fungi (THF)	(cfu/ml)	Utilizing Fungi	(cfu/ml)
			(HUB)				(HUF)	
SW	Alcaligenes sp	2.54 x	Escherichia sp	1.44 x	Alcaligenes sp	1.67 x 10 ²	Proteus sp	1.1 x 10 ²
1	Proteus sp	10 ³	Actinomyces sp	10 ¹	Proteus sp			
	Escherichia sp							
	Actinomyces sp							
SW	Bacillus sp	3.8 x	Micrococcus sp	2.33 x	Bacillus sp	3.47 x 10 ³	Bacillus sp	2.03 x
2	Micrococcus sp	104	Pseudomonas sp	10 ²	Micrococcus sp		Micrococcus sp	10 ¹
	Pseudomonas sp		Staphylococcus		Pseudomonas sp			
	Staphylococcus sp		sp		Staphylococcus sp			
SW	Escherichia sp	4.15 x	Micrococcus sp	1.66 x	Arthrobacter sp	3.47 x 10 ³	Arthrobacter sp	2.20 x
3	Arthrobacter sp	104		10 ²	Micrococcus sp		Micrococcus sp	10 ²
	Micrococcus sp				Pseudomonas sp			
	Pseudomonas sp							
SW	Streptococcus sp	5.3 x	Escherichia sp	2.85 x	Flavobacterium sp	3.8 x 10 ⁴	Flavobacterium sp	1.27 x
4	Flavobacterium sp Alcaligenes	10 ³	Arthrobacter sp	10 ¹	Alcaligenes sp			10 ³
	sp Proteus sp				Proteus sp			

	E. sp Arthrobacter sp										
SW	Streptococcus sp	2.84	Х	Flarobacterium sp	1.04	Х	Streptococcus sp	2.32 x 10 ²	Streptococcus sp	2.06	х
5	Flavobacterium sp	104		Alcaligenes sp	10 ¹		Flavobacterium sp		Flavobacterium sp	10 ¹	
	Alcaligenes sp						Alcaligenes sp		Proteus sp		
	Proteus sp						Proteus sp				
	Escherichia sp										
SW	Staphylococcus sp	3.69	Х	Micrococcus sp	3.12	Х	Staphylococcus sp	2.78 x 10 ⁴	Staphylococcus sp	2.42	х
6	Micrococcus sp	105		Streptococcus sp	10 ³		Streptococcus sp		Streptococcus sp	10 ²	
	Streptococcus sp			Flavobacterium			Flavobacterium sp		Flavobacterium sp		
	Flavobacterium sp			sp			Alcaligenes sp				
	Alcaligenes sp			Alcaligenes sp							
	Escherichia sp										
SW	Micrococcus sp	4.81	х	Pseudomonas sp	2.77	Х	Micrococcus sp	3.65 x 10 ⁴	Micrococcus sp	2.31	х
7	Pseudomonas sp	10 ⁵		Staphylococcus	10 ³		Pseudomonas sp		Pseudomonas sp	10 ²	
	Staphylococcus sp			sp			Staphylococcus sp		Staphylococcus sp		
	Streptococcus sp			Streptococcus sp			Streptococcus sp				
	Flavobacterium sp						Flavobacterium sp				
	Alcaligenes sp										
	Proteus sp										
1		1		1	1			1		1	

SW	Bacillus sp	3.64	Х	Pseudomonas sp	1.36	Х	Bacillus sp	2.76 x 10 ³	Micrococcus sp	1.43	Х
8	Micrococcus sp	10 ⁵		Staphylococcus	10 ²		Micrococcus sp		Pseudomonas sp	10 ²	
	Pseudomonas sp			sp			Pseudomonas sp				
	Staphylococcus sp			Micrococcus sp			Staphylococcus sp				
	Micrococcus sp										
	Streptococcus sp										
SW	Micrococcus sp Streptococcus	5.03	Х	Flavobacteriumsp	3.74	Х	Micrococcus sp	3.56 x 10 ²	Streptococcus sp	1.71	Х
9	sp	10 ⁶		Alcaligenes sp	104		Streptococcus sp			10 ¹	
	Flavobacterium sp			Proteus sp			Flavobacteriumsp				
	Alcaligenes sp Proteus sp			Escherichia sp							
	Escherichia sp										
SW	Flavobacterium sp	4.01	Х	Proteus sp	2.62	Х	Alcaligenes sp	3.42 x 10 ³	Escherichia sp	2.12	х
10	Alcaligenes sp Proteus sp	10 ²		Escherichia sp	10 ¹		Proteus sp		Actinomyces sp	10 ²	
	Escherichia sp Actinomyces sp						Escherichia sp				
							Actinomyces sp				

Species	Broad spectrum of growth media	Examples of local foods as			
		possible growth medium			
Bacillus sp	nitrogenous substance	Meat, Groundnut, bread			
Pseudomonas sp	vitamins, carbohydrates, nitrogen, and salts	Egg, bean and meat			
Micrococcus sp	Nutrient agar plate and broth	Rice, corn and bread			
Proteus sp	Nitrogen, vitamins, lactose	Meat, Egg, Groundnut, bread			
Arthrobacter sp	Nitrogen, carbon	Cassava tubers, corn			
Flavobacterium sp	Proteosepeptone, acids, Yeast, Dextrose,	Meat, fish, Bread, Egg, Yam			
	Soluble starch, phosphate, Magnesium				
	Sodium,				
Staphylococcus sp	vitamins, carbohydrates, nitrogen, and salts	Meat, Groundnut and Bread			
Streptococcus sp	vitamins, carbohydrates, nitrogen, and salts	Meat, Groundnut and Bread			
Escherichia sp	vitamins, carbohydrates, nitrogen, and salts	Meat, fish, Egg cheese			
Actinomyces sp	vitamins, carbohydrates, nitrogen, and salts	Meat, fish, Beans, cheese			
Alcaligenes sp	vitamins, carbohydrates, nitrogen, and salts	Meat, fish, Beans, Egg, Yam			

Table 6.16: Substrate matrix for Surface water microbial species

The presence of faecal contamination indicator species (*Escherichia sp*) is suggestive of water unsafe for drinking and it entails open defecation practice in the area. Interestingly, the samples were devoid of water-borne pathogens such as *Giardia lamblia* and *Vibrio cholera*. However, details of the composition, abundance and broad-spectrum media nutrients of the microbial species assayed in the various samples is suggestive of contamination by food waste and runoff from fertilizer laden agricultural lands (Nitrogen source). All microbial species assayed in this study had been reported as playing key ecological roles in various water systems especially nutrient recycling.

6.2.10.10 Sediment Study

Sediment Physico-Chemical Analyses

Sediment (bottom of river, stream, lake etc) serve as sink for contaminants from the overlying surface water. The physico-chemical characteristics of the sediment thus provide indication to what the trend of the pollution or otherwise status of the surface water has been.

Several physico-chemical parameters for recovered sediment samples from water bodies in the study area were conducted. Some of the parameters include pH, Total Hydrocarbon (THC), Nitrates, Phosphates, Sulphates, Magnesium, Sodium, Potassium, Calcium and about nine (9) heavy metals.

Table 6.17 shows the various parameters and their concentrations across spatial and temporal gradients. Similarly, the regulatory limits and ranges of some of the parameters (where they exist) were used as the benchmark for determining existing status. Also, the results of the baseline study were compared with those observed and reported for contiguous areas. The sampling points were same as that of the surface water.

Table 6.17: Result for Sediment Physico-chemical Results

	Alaoji-Ih	iala					Ihiala-O	nitsha			FMEnv	Interim
											Limits	Sediment
											Aquatic	Quality
											lives	Guidelines
												(ISQGLimits
												Aquatic lives
PARAMETERS	SD1	SD2	SD3	SD4	SD5	SD6	SD7	SD8	SD9	SD10		
рН	7.35	7.93	7.55	8.30	6.05	8.13	7.75	8.13	8.35	7.50		6.0
Oil & Grease (mgl)	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00	<1.00		
THC (mg/kg)	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00		
Chloride (mg/l)	76.4	75.8	74.2	77.0	75.6	73.0	73.9	74.5	75.1	78.7		
Ext.Nitrate(mg/kg)	0.16	0.16	0.17	0.15	0.13	0.16	0.14	0.15	0.16	0.13		
Ext.Phosphate(mg/kg)	1.43	2.25	1.94	1.67	1.72	3.68	1.22	1.55	3.06	2.78		
Ext.Sulphate(mg/kg)	4.68	4.81	4.89	5.20	7.36	5.41	4.29	3.81	3.86	3.93		
Chromium (mg/kg)	0.27	0.26	0.26	0.28	0.26	0.26	0.27	0.27	0.28	0.30	50	
Lead (mg/kg)	0.09	0.06	0.09	0.07	0.11	0.06	0.08	0.06	0.08	0.07		
Zinc (mg/kg)	1.17	1.51	1.25	1.26	1.46	1.35	1.48	1.41	1.49	1.37	5000	120-540
Copper (mg/kg)	3.74	3.15	3.76	3.40	3.93	3.41	3.78	2.87	3.33	3.57	35.7	

Total Iron (mg/kg)	1.02	1.18	0.53	1.17	1.00	1.13	1.81	1.00	1.10	0.75	300	
Nickel (mg/kg)	0.61	1.23	0.96	0.90	0.69	0.93	0.84	0.96	0.74	1.06		
Cobalt (mg/kg)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01		123-540
Cadmium (mg/kg)	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	5	0.6-3.5
Vanadium (mg/kg)	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00	<5.00		

As shown in Table 6.21 All physico chemical parameters analyzed in the sediment samples were within FMEnv/ISQG threshold values.

6.2.10.11 Sediment Microbiology

Sediment samples were also analyzed for microbial content. Table 6.18 presents the result. The microbial composition of sediments is similar to those observed in the surface water samples, except for the absence of faecal contamination indicators.

Table 6.18: Microbial species observed in the surface water samples

	Total Heterotrophic	Count	Hydrocarbon utilizing	Count	Total Heterotrophic	Count	Hydrocarbon	Count
	Bacteria (THB)	(cfu/ml)	Bacteria (HUB)	(cfu/ml)	Fungi (THF)	(cfu/ml)	Utilizing Fungi (HUF)	(cfu/ml)
SW1	Bacillus sp Staphylococcus sp Micrococcus sp Actinomyces sp Proteus sp	3.86 x 10 ³	Staphylococcus sp Micrococcus sp	2.0 x 10 ²	Aspergillus sp Candida sp Rhodotorula sp	3.24 x 10 ³	Aspergillus sp Candida sp	1.68 x 10 ¹

Geomatics Nigeria

ESIA REPORT FOR THE PROPOSED RECONSTRUCTION OF ALAOJI-ONITSHA 330kV DC QUAD CORE TRANSMISSION LINE

SW2	Staphylococcus sp Micrococcus sp Actinomyces Pseudonomas sp Bacillus sp	4.63 x 10 ³	Micrococcus sp Actinomyces Bacillus sp	3.18 x 10 ²	Aspergillus sp Candida sp Rhodotorulasp Penicillium sp	3.42 x 10 ³	Rhodotorulasp Penicillium sp	2.11 x 10 ²
SW3	Pseudonomassp Bacillus sp Staphylococcus sp Micrococcus sp Actinomyces sp Proteus sp	4.91 x 10 ⁴	Pseudomonas sp Staphylococcus sp Micrococcus sp	2.6 x 10 ²	Candida sp Rhodotorulasp Penicillium sp Mucor sp Fusarium sp	3.1 x 10 ³	Penicillium sp Mucor sp	1.52 x 10 ²
SW4	Pseudonomassp Bacillus sp Staphylococcus sp Micrococcus sp Actinomyces Proteus	3.41 x 10 ⁴	Bacillus sp Staphylococcus sp Micrococcus sp	2.14 x 10 ²	Aspergillus sp Candida sp Rhodotorulasp Penicillium sp	3.03 x 10 ³	Aspergillus sp Candida sp	1.2 x 10 ²
SW5	Micrococcus sp Actinomyces sp Pseudonomas sp Bacillus sp Protues sp	4.2 x 10 ⁴	Pseudonomas sp Bacillus sp	2.16 x 10 ²	Penicillium sp Mucor sp Fusarium sp	3.28 x 10 ⁴	Fusarium sp Penicillium sp	2.04 x 10 ³

SW6	Micrococcus sp Actinomyces sp Proteus sp	3.75 x 10⁵	Actinomyces sp Proteus sp	2.14 x 10 ³	Candida sp Rhodotorulasp Penicillium sp Mucor sp	3.22 x 10 ⁴	Penicillium sp Mucor sp	2.42 x 10 ³
SW7	Staphylococcus sp Micrococcus sp Actinomyces sp Proteus sp	3.44 x 10 ³	Actinomyces Proteus	2.83 x 10 ¹	Rhodotorulasp Penicillium sp Mucor sp Fusarium sp	2.79 x 10 ²	Mucor sp	1.2 x 10 ¹
SW8	Staphylococcus sp Micrococcus sp Actinomyces Proteus	5.23 x 10 ⁶	Actinomyces sp Micrococcus sp	3.51 x 10 ⁴	Rhodotorulasp Penicillium sp Mucor sp Fusarium sp	4.2 x 10 ³	Penicillium sp Mucor sp	3.17 x 10 ²
SW9	Bacillus sp Staphylococcus sp Micrococcus sp Actinomyces sp	2.89 x 10 ⁴	Staphylococcus sp Micrococcus sp Actinomyces sp	2.13 x 10 ³	Aspergillus sp Candida sp Rhodotorula sp	2.06 x 10 ³	Candida sp	1.34 x 10 ¹
SW10	Actinomyces Pseudonomassp Bacillus sp Protuessp	3.6 x 10 ⁴	Bacillus sp Pseudomonas sp Protues sp	2.78 x 10 ²	Aspergillus sp Candida sp Rhodotorulasp Penicillium sp Mucor sp Fusarium sp	2.38 x 10 ³	Rhodotorulasp	1.85 x 10 ²

6.2.10.12 Results of Fisheries Studies

A fishery study was obtained via market survey and professional observation *in situ* as well as interviews from fisherman and the local vendors. Pictorial evidence of these fishes from the study area is further presented in Plate 6.4 while Table 6.19 presents the Fish Composition within the Study Area.

S/N	Common Name	Biological Name	2018 IUCN		
			Ranking		
1	Bagrid catfish	Chrysicthys nigrodigitatus			
2	Trunkfish	Cyphomyrus psittacus			
3	Elephantnose fish	Gnathonemus pestersii			
4	Sudan catfish	Baggrus docmak			
5	Nile tilapia	Oreochromis niloticus			
6	Elongate tigerfish	Hydrocynus forskahlii			
7	African pike Characin	Phago loricatus			
8	Freshwater rat-tail	Gymnarchus niloticus			
9	Heterotis	Heterotis niloticus			
10	Electric eel	Electrophorus electricus			
11	Cichlid	Tilapia galilaeus	Least		
12	Clupeid	Pellonula afzellusi	Concern		
13	Silver catfish	Chrysichthys nigrodigitatus			
14		Gnathonemus enegalensis			
15		Marcusenius senegalensis			
16	African catfish	Clarias lazera			
17	Mud catfish	Clarias anguillaris			
18	Mud catfish	Clarias gariepinus			
19	Niger/Nile Perch	Lates niloticus			

Table 6.19: Fish Composition of the Study Area

*Species 13-19 are additional species reported present but in literature for this geographic range Source: GNL Field Study, 2019

Geomatics Nigeria

(A) Oreochromis niloticus

(B)Phago loricatus

(C) Chrysichthys nigrodigitatus

(D) Gnathonemu senegalensis Plates 6.4 (A-D): Some Fish Species of the study Area *Length – Weight Relationship*

The computed Length – Weight Relationship (LWR) for representative fish species obtained in the markets is presented in Table 6.20. The LWR for all the fishes correlated significantly with r = 0.704 - 0.873, and p < 0.01. Most of the fishes exhibited almost identical mean length exponent (b). The regression exponent (b), which signifies the type of growth, ranged from 1.719 - 3.011. When b = 3 growth is considered isometric, meaning that the weight of the body is closely proportional to the cube of its length. Most of the species recorded coefficient which did not differ remarkably from 3.0 indicating growth in such fishes to be isometric. The regression exponents for all other species were less than 3.0 indicating growth in these fishes to be negatively algometric.

Table 6.20: Computed LWR for Fish Species obtained from markets in the study are
--

Fish species	Total Length Weight		Condition	Gonado Somatic
	(cm)	(g)	Factor (K)	Index (GSI)
Hydrocynus forskahlii	25.9	294	2.42	2.99
Phago loricatus	38.3	195	0.31	2.09
Gymnarchus niloticus	28.8	171	1.21	1.92
Heterotis niloticus	55	1309	0.91	1.19
Mean	37	492.25	1.2125	2.0475

*LWR-length weight relationship

Length Frequency Distribution

Condition Factor

The mean condition factor (k) was also computed for some selected species. The k values ranged from 0.39 to 2.40 with a mean 1.16. This is slightly greater than unity (k < 1.0) and depicts unstressed body condition for fish assemblage in the study area. The condition factor expresses the relative robustness of a fish. The poor body condition for most of the fishes observed indicated the presence of environmental degradation and reduced abundance of food resource base, which negatively affected the good body fitness and growth of the fish. It is also an indication that other environmental variables were not very favorable to the fishes.

Physical Deformities and Fish Health

Most of the fishes examined were found to be healthy with no physical deformities. This may be due to attack by piscine predator. Examination of gut contents revealed traces of fish in the diet. Few specimens of *Gymnarchus niloticus* and *Tilapia galilaeus* showed part of the dorsal and caudal fin affected. No other physical deformity or parasitic infestations were observed apart from marks and wounds due to fishing gears.

Food Items of Fish species

Fish are regarded as highly successful in their feeding habit, because of the ability to utilize varied food items. Their feeding habits vary from predators through plankton to detritus feeders. The physical and chemical characteristics determine the composition of fish food items in a given environment. Plankton and aquatic vegetation and fish parts were found in the stomach of many fishes in this study and a few with empty stomachs.

Threatened or Endangered Species

IUCN 2019 version revealed that none of the species is threatened.

Craft and Gear Survey

Crafts Survey

Fish capture techniques used in the study area included, seining, and trapping (Nwabeze*et al.*, 2013) However, some of the fishers use selective and non-selective gears, which indiscriminately catch juveniles and could deplete the stock and reduce the sustainable yield.

Fisheries Survey Socio-economic

There is actually no secluded location for fishermen as they live among other people of various trades and occupation in the study area. Majority of the ethnic groups were the Igbos. The educational qualification of these people ranged from non-formal educational to secondary education. The age structure of the fishermen was mostly in the range of 25 to 60 years old. Most of the fishermen in this area are monogamous with very few having two or more wives. Most of the Fishermen do not have any source of finance other than the money that accrues to them from the sale of their fish. At this time of the year a fisherman makes about N2, 000 to N5, 500 for the sale of fish per day depending on the total catch.

Fish Processing and Marketing

The commonest fish processing and preservation method is by smoke-drying. The study revealed that traditional fish storage techniques were still prevalent. Immediately after landing, fish were thoroughly washed with either clean water or saltwater to remove dirt and microorganisms on the surface. This also enhances cooling the fish which temperature might have been raised due to ambient temperature. This slows down rate of deterioration. The recorded traditional fish storage techniques were thatched house, hut roof, smoke house, kitchen roof and eaves of houses. Traditional storage technologies were dependent on moisture content of the fish, and this should be less than 8% to prevent bacteria attack and autolytic activity will be prevented. Also, the presence of salt retards bacteria action and it aids the removal of water through osmosis (Clucas and Sctcliffe, 1991). Remarkably, from personal communication with Market women (They objected to having snap shots) some folks had big refrigerators powered by generators to keep the fish in its frozen state, others preserve the fishes in coolers stuffed with ice-blocks. It was revealed that virtually all processing and marketing of fish landed by fishermen were carried out by female members.

6.3 Biological Environment

There are nine distinct ecological zones in Nigeria which can be streamlined into five, namely (i) Sahel/Sudan Savanna, (ii) Guinea Savanna, (iii) Derived Savanna, (iv) Lowland rainforest/montane forest and (v) Freshwater swamp forest/mangrove forest and coastal vegetation (Figure 6.10).

Figure 6.10: Map Showing Different Vegetation Belts of Nigeria

6.3.1 Habitat Types and Flora Studies

6.3.1.1 Sampling Parameters and Methods (Flora)

Specific and standard methodology was adopted for specific floral taxon for which baseline information were obtained. Some of the floristic parameters to be determined as shown in Table 6.21 include specific and family information (life forms, diversity richness, alien species inventory and indigenous uses). A total of fifteen 100m line transects was established for vegetation study along the RoW.Species touching or overshadowing the line transect were manually enumerated and converted to the Blanquet scale. Species type, habitat type, DBH, growth habit and interviews on indigenous uses and local names of species was conducted. Also, the IUCN data base of alien invasive and IUCN 2018 version 2 standard was used in computing IUCN status. Table 6.21 is a summarize methodology protocols. A total of 12 vegetation plots were studied.

Flora						
Sampling						
Parameter	Sampling Method	Sampling Analytical Method				
		Field botanical characters used for identification				
		include flowers, fruits, leaves, slash, exudates, and				
		sometimes smell. Field guides include Letouzey				
		1986, Hutchinson and Dailziel, 1963, 1972.				
		Hawthorne1993, Souane 1985, White and				
		Abernethy 1997, Akobundu and Okezie 1998,				
Species and family		Arbonnier 2006, Nyannanyo 2006 and Ebigwai				
diversity		2012				
		H= -ΣPilnPi, Where H = Shannon's index, In = log.				
Species Diversity		$E = EQ = -\Sigma PilnPi / InS;$ Where $EQ = equitability, S$				
Indices		= total number of species (Begon, et al 1986))				
		Abundance of species was evaluated by counting				
		the number of individuals of a species in each				
		Whittaker transects. Family abundance was				
		evaluated by counting the number of individuals of				
Species		species belonging to a family (Gauch, 1982).				
		Number of plots in which species/family is				
		recorded x 100				
		Total number of plots censured				
Species frequency		(Sutherland et al 1996).				
	Line transect of 500 x	Number of plant species recorded				
Species density	500m	Total number of plots censured				
		The various indigenous uses of the recorded plant				
	Ethno botanical	species were compiled in addition to plant species				
Indigenous uses	questionnaires	with the most diverse uses				

Table 6.21: Biodiversity Survey Methods and Procedures

		The occurrence of exotic species was compiled					
Alien & invasive	IUCN & Literatures and	based on literature searches and absence of local					
species absence of local names		names. Odugbemi 2006					
Conservation		Number of threatened species x 100					
status	IUCN Red List of 2018	Total number of species					
	IUCN database 2018						
Protected species	and CITES ACT 2016	-					

Figure 6.11: Vegetation Sampling Points

6.3.1.2 Baseline Characterization

6.3.1.2.1 Habitat types

Habitat study is essential to understanding spatio-temporal patterns in species distribution and hence significant towards implementing conservation efforts. The study area consists of three habitats. They are Secondary Forest (SF), Derived Savanna (DSF) and Seasonal Swamp forests (SSF). The habitat size estimated from sampling plots indicated 2,000m² (26%) for SSF, 2,000m² (26%) for DSF and 3,500m² (46%) for SF, making the SSF the dominant habitat along the proposed line route studied. Plate 6.5 are representative photographs of the three habitats. Figure 6.11 shows vegetation sampling points.

(A) Derived savanna(B) Secondary forestPlate 6.5 (A-C): Overview of the Study Area Habitats

(C) Seasonal swamp forest

6.3.1.2.2 Species diversity of the study area

Species Richness

This is the total number of species censored in a defined area. It is often used as a criterion for ecosystem disturbance or stability. A total of ninety-one (91) species were censored in the study area. A comprehensive list of the censored flora including those for each habitat is shown in Appendix 6.3 while the summarized result is presented in Table 6.22.

Habitat	Species	Species Richness per transect														
	Richnes	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
	S															
Seasonal	43			19	10			16			15					17
Swamp Forest																
Derived	39	18	17		10				8				13			
Savannah																
Secondary	58					14	16			10		14		13	15	17
Forest																

Table 6.22:	Species	Richness	per Habitat

Source: GNL, 2019

As could be seen in Table 6.22 expectedly, the Secondary Forest (SF) had the highest number of species, followed by the SSF, and then the DS with recorded species richness of 58, 43 and 39 respectively. The challenging access to the swamp may be responsible for the higher species richness observed. The observed wildfire and intense grazing activities at the savanna habitats would have contributed significantly to the recorded sparse species.

Species Density

Density refers to the number of species per given area. In this project, species density is used to evaluate number of plant species in the route. This in turn helps in vegetal waste quantification as shown below: Tree to Ton Conversion Standard (inch ft) = 24 trees at 40 ft x 7 inch (where 24= number of tree species in one ton with an average height of 40ft and an average DBH of 7inch). No tree satisfies the stated criteria and hence vegetal waste from TL clearing is negligible.

Shannon and Evenness Indices

Shannon Wiener Index and evenness index were used to evaluate species diversity for the habitats. The SSF with a Shannon index of 2.98 was more diverse than the Savanna with 1.24. This is indicative of more species biomass in the habitat than the others.

Species Growth Habit

Species Growth Habit is the form in which a species exists. The censored species exhibited six (6) growth habits comprising about two-third woody (Tree and shrubs) and one-quarter, non woody (ferns, grasses,

climbers and herbs). The relatively high proportion of non- woody species as well as woody species with low DBH is indicative of habitats under disturbances.

6.3.1.2.3 Alien and invasive species

Alien species are plant resources that are inadvertently introduced into an area while invasive species may or may not be alien except that they may out-compete other species and establish dominance. International Union for the Conservation of Natural Resources (IUCN) listed about 24 plant species that are alien to Nigeria, while the global invasive database listed the occurrence of 29 invasive floras in Nigeria. A review of the alien species data base for Nigeria showed that two (2) of these species (*Ageratum conyzoides,* and *Chromolaena odorata*) occur in the study area. On the other hand, three (3) species (*Chromolaena odorata, Dalbergia sisso* and *Mimosa pudica*) were invasive. The presence of these alien/invasive species in the study area signifies a disturbed ecosystem possibly from anthropogenic activities. Plates 6.6 and 6.7 are pictures of some of these species.

(A) Ageratum conyzoides

(B) Chromolaena odorata (awolowo weed)

Plate 6.6 (A-B): Alien species of the study area

(A) Mimosa pudica (Touch me not) (B) Dalbergia sisso Plate 6.7 (A-B): Invasive species of study area

6.3.1.2.4 IUCN Status

The IUCN status of the plant resources of studied area was evaluated using the IUCN red list version 2018 -2 criterion. Results showed that five species are of conservation concern. These are *Sericanthetoupetou* (Endangered) and *Afzelia africana, Dalbergia latofolia, Ricinidendron heudelotii* and *Lophira alata* in the Vulnerable category. *Sericanthe toupetou* was censored in Irogun-agire community (10) with an abundance of 6 individuals. Interestingly most of these species are under protection in Gele Gele forest reserve, Omo forest reserve and Olokemeji forest reserves. Plate 6.8 shows pictorial images of these threatened species.

(A) D. latofolia (VU) (B) A. Africana (VU) (C) R. heudelotii (VU) (D)Sericanthe toupetou (EN)

(E) Lophira alata (Azobe) (VU)

Plate 6.8 (A-E): Pictures of Threatened Species in the Study Area

Table 6.23 provides reviewed data on the five Threatened species.

Ricinodendron

heudelotti

Sericanthe

Lophira alata

toupetou

Species	Common name	2019 IUCN	Threats	Reserves Protected
		Conservation		in Nigeria
		status		
Dalbergia	Black	Vulnerable A1d	Habitat	Gele gele forest
latifolia	Rosewood	ver 2.3	fragmentation,	
Afzelia africana	Afzelia	Vulnerable A1d	exploitation and	Kamuku National

Logging

Park

Olokemeji

Reserves

Omo Forest Reserve

Forest

Table 6.23: Threats and Conservation Actions of the Threatened Plant Taxa of the Study Area

Source: Adeyemi, Ibe, Okedimma, (2015), Adegoke Wahab, (2012), IUCN, (2019)

ver 2.3

ver 2.3

ver 2.3

ver 2.3

Vulnerable A1d

Vulnerable A1d

Vulnerable A1d

6.3.1.2.5 Habitats of higher ecological integrity

tree

African

oil nut tree

Red iron wood

wood

Important flora resources censored in this study were mapped as shown in Table 6.24. Criteria adopted for the mapping are plant species with high indigenous uses, invasive and alien species as well as those categorized under any of the Threatened classes.

Table 6.24: Ecologically sensitive species and their locations

Category	Species	Locations/Habitats				
Species with	Gmelina aborea (11)	(DS)	(SSF)	(SF)		
high indigenous				\checkmark		
uses	Elaeis guinnensis (7)					
	Lophira alata (5)		\checkmark			
	Pentaclethra macrophylla (5)	V				
	Bambusa vulgaris (4)					

Threatened	Afzelia africana (VU)	V	ν	V
	Dalbergia latifolia (VU)	V		
	Lophira alata (VU)	(SF)	\checkmark	
	Ricinodendron heudelotii (VU)	V		
	Sericanthe toupetou (EN)	(SSF)		
Alien species	Ageratum conizoides		\checkmark	
	Chromolaena odorata		\checkmark	\checkmark
Invasive	Mimosa pudica	(DS)	\checkmark	\checkmark
Species	Chromolaena odorata			
	Dalbergia sissoo	(SF)	\checkmark	

*DF=Derived Savannah, SF=Secondary Forest SSF=Seasonal Swamp Forest

The high abundance of these species in the SSF and DS could be attributed to their preference for the habitat as well as high proliferation potential in the area (Table 6.24).

6.3.1.2.6 Indigenous uses of Plant Resources in the Study Area

The indigenous uses of the various plant resources censured in the study area were evaluated via interviews as shown in Plate 6.9. Table 6.25 provides a list of data obtained via the interview session.

S/N	SPECIES	INDIGENOUS USES	NO
			OF USES
1	Ageratum conyzoides	Fodder	1
2	Albizia zygia	Medicinal, Gum & Adhesives, Tannin, Wattles	4
3	Alchornea cordifolia	Medicinal	1
4	Annona muricate	Fuelwood, Prevention of Soil Erosion	2
5	Anthoclesista	Fuelwood and Wattles	2
	djalonensis		

Table 6.25: Plant Species and Their Indigenous Uses

6	Azadirashta indica	Fuelwood, Medicinal and Fence	3
7	Bambusa vulgaris	Fuelwood, Chewing Sticks, Fence and Wattles	4
8	Baphia nitida	Fruits&Seeds and Nuts	2
9	Ceiba pentandra	Medicinal, Fruits & Seeds and Frames for Doors &	3
		Windows	
10	Chromolaena odorata	Fence	1
11	Dialium guineese	Fuelwood, Medicinal and Chewing Sticks	3
12	Elaeis guineesis	Medicinal, Nuts, Sweeteners, Beverages & Drinks,	7
		Shade from Sun and Roof Trusses (Roof Rafters &	
		Purloins)	
13	Gmelina aborea	Fuelwood, Charcoal, Medicinal, Chewing Sticks Fodder,	11
		Fence, Wattles, Poles, Green Manure & Soil	
		Reclamation Shade from Sun, Prevention from Soil	
		Erosion, Frame for Doors and Windows	
14	Harungana	Medicinal, Chewing Sticks	2
	madagascariesis		
15	Lophira alata	Fuelwood, Medicinal, Roof Trusses (Roof Rafters &	5
		Purloins), Frame or Doors & Windows, Stairs	
16	Mitragyna stipulosa	Fuelwood, Frame for Doors & Windows, Stairs	3
16	Musanga cecropioides	Medicinal	1
17	Pentaclethra	Fuelwood, Charcoal, Medicinal, Spices, Flavouring &	5
	macrophylla	Thickeners, Green Manure& Soil	
		Reclamation Shade from Sun	

Source: GNL, 2019

Seventeen (17) species representing about 18.7% have indigenous uses. *Gmelina aborea, Elaeis guineensis, pentaclethra macrophylla, Lophira alata* and *Bambusa vulgari* are the most used plant species in the study area as a result of the wide range of products they offer.

This include; Medicine, fuel wood, raw material (wood for construction of bridge, houses and electric pole, etc). On the other hand, *Ageratum conyzoides, Alchornea cordifoia, Annona muricata, Anthoclesista djalonensis* and *Musanga cecropioides* were less use due to the limited number of products they offer. The inventory of some species in one plot with reduced individuals is a worrying sign of over harvesting. Plate 6.9 shows some of the indigenous uses.

Plate 6.9 (A-C): Products from Plant Taxa Censored

6.3.2 Hepatofauna

6.3.2.1 Study Methodology

Direct observations

Diurnal and nocturnal expeditions to recognize evidence of herpetofauna species presence was undertaken. Formal transect surveys of reptiles and amphibians were conducted simultaneously, following thetransects already established for flora. Transects were walked slowly and all reptiles and amphibians encountered carefully observed. The sighted herpetofauna were snapped were possible and identified to the lowest possible taxa by specialist. Appropriate field data sheets were employed to capture information like species list with scientific, common and local names and abundance.

Indirect observations

The recorded evidence was represented both by direct (collections and observations) and indirect (tracks, footprints, scats/faeces, feeding activity, tracks, holes/diggings or scratching and carcass, habitats and dwelling places, vocals and call outs etc.). Local land users were also interviewed about hepatofauna they had seen or hunted in the area, and these were identified from pictures. The local language names were recorded. Other information gathered from the locals includes habitat history, faunal distribution pattern, seasonal migration, harvesting methods and threats to biodiversity in the study area. A summarized sampling protocols is provided in Table 6.26.

Hepatofauna Group	Survey Technique	Survey Effort per Vegetation				
		Community				
Reptiles						
Diurnal searches	Habitat searches	0.1 ha search for one-person hour				
		on 2 days per site				
Nocturnal searches	Spotlight searches	Walking rate of 400 metre per hour				
		per				
		person on 2 nights				
Specific habitats	Diurnal + nocturnal	One-person hour diurnal + One-				
	Searches	person hour per 0.1 ha. Nocturnal				
Pitfall trapping						
Amphibians						
Diurnal searches	Systematic searches	0.1 ha search for one-person hour				
		per				
		habitat				
Nocturnal searches	Spotlight searches	30 mins on two separate nights				
	Playback of recorded calls	Once on each of 2 separate nights				
Specific habitat	Pitfall trapping	2hrs per 200 metre of water body				
searches						

Table 6.26: Sampling Methods used for the Hepatofauna groups

Conservation Statuses

The global conservation status of all species was obtained from the IUCN Red List of Threatened Species Version 2018-2. The IUCN categories rank the relative risk of individual taxa becoming extinct in the wild based on a set of standardized criteria.

6.3.2.2 Result

6.3.2.2.1 Hepertofauna

Result showed that herpertofauna species were censured across the three habitat types in the study area. Table 6.27 shows this information.

		Table 6	6.27: Herpetofa	una Che	ecklist						
	Species		Conservation	Status		Habitat Censored			Reviewed I	₋iterature	
Таха		Common	Endangered	IUCN	Endemi	-					
		name	Act 2016		sm	Sec.	Swa	Savann	Breeding	Feedina	Threats/Conser
						forest	mp	а	5	5 5 5	vation Actions
Amphibi	Hoplobatrach	Groove	Not listed	LC	NO	1	1	2	Late Feb-	Insects.	Not under threat
ans	us occipitalis	Crowned							March	algae.	
		frog								leaves.	
	A		Not Koto d			<u> </u>				fish	
	Amnirana	-	NOT IISTED	LC	NO	3			Feb -April	lien	
	Albolabris										
	Hyperolius	Variable	Not listed	LC	NO	3	1		Feb-April		
	concolor	reed toad									
	Hvperolius		Not listed	DD	NO		5		March -		
	fasciatus								April		
							0				
	Ptychadena		Not Listed	LC	NO	1	2	2	Feb -April		
	pumilio										

	Xenopus		Not Listed	LC	NO	3		1	March-		
	muelleri								Early May		
Rentilia	Δaama	Common	Not Listed		NO	4		2			
ποριπα	hoonoio	Lizord	NOT LISTOU			-		2			
	DUEIISIS	LIZATU									
	Crocodylus	Nile	Absolutely	LC	NO	Censore	ed via	indirect	April -	Fish	Legislation and
	noliticus	crocodile	prohibited			evidence	Э		May in	aves,	enlightenment
									sands or	amphibi	
									under	ans,	
									rotten	Mammal	
									vegetatio	s. fruits	
									n	-,	
	Afronatrix	African	Not Listed		NO		1			Amphihi	Biological
	Allollallix				NO		1		Diy		Biological
	anoscopus	brown water							season	ans and	resource use
		snake								fish	and Agricultural
	Bitis arietans	Viper	Not Listed	LC	NO	Censore	ed via	indirect	Variable	Amphibi	activities. In situ
						evidence	Э			ans and	conservation in
										fish	reserves
	Holaspis		Not Listed	LC	NO	-			October -	Amphibi	
	guentheri								Decembe	ans and	
									r	fish	
					1						

Mehelya	Egbe f	file	Not Listed	DD	NO		1	Not	Amphibi	
egbensis	snake							Available	ans and	
									fish	

As could be seen in Table 6.27, secondary forest recorded the highest number of species and species abundance. This indicates the relative preference for this habitat by herpetofauna in the study area. This could be attributed to the availability of food, breeding grounds, vegetative cover and the fertile environment provided by this habitat in the area.

In terms of species abundance, reptilian group recorded a remarkable lower attendance with 2 individuals. Reptiles are biological predators of amphibians; hence, the lower abundance of the former promotes habitat proliferation by the later. Also, reptiles are hunted by man and predatory birds, which might possibly, be responsible for their low diversity and abundance in the study area.

There was no species of conservation interest in the study area; however, the censored reptilian taxa are under localized threat from biological resource use and Agricultural activities. In situ conservation in reserves is suggested since this group of herpetofauna play important role in ecosystem balancing and moderation.

6.3.2.3 Avian Fauna

6.3.2.3.1 Study methodology

Methodology for birds' surveys

The bird surveys provided information on:

- Estimation of number/density of birds regularly present or resident within the study area before its construction;
- Patterns of bird movements in the vicinity of the line route before construction;
- Presence, abundance and use of habitats from endemic and threatened species inside the planned Right-of-Way (RoW)
- Identification of breeding/wintering grounds if present
- To meet these objectives, three inventory methods will be used. These methods are described herein.

Counting stations along transect

In order to estimate the number and density of birds, birds were sampled using counting stations along each transect visited. The distance in between each counting station may vary according to habitat patches size but should be of 250 m minimally. The number of counting stations will be determined depending of the number of different habitats to inventory and field accesses. However, a minimum of two counting stations should be made along each transect. Counting stations should be maximised during

early morning when singing bird activity is at its maximum. The counting stations will be located preferably in homogenous habitat patches. Additional points will be also placed in rare habitats.

At each point count, ornithologists will arrive at a site and wait still for one minute to let the birds settle down, in case they had been disturbed. The observer will then make a fifteen-minute count, noting all birds seen or heard at the station and the distance from the observer to the bird in the following distance classes: 0-50m, 50-75m, 75-100m, >100m. In the first 5-minutes period, observer will note all bird seen or heard. Subsequently, only the additional individuals will be noted (for second and third 5-minutes periods).

General information taken were

eomatics Nigeria

- station name
- observer name
- date
- time (start and end)
- temperature (°C)
- cloud (%) precipitation (rain, fog etc.)
- wind speed (Beaufort scale)
- wind direction
- observation conditions
- Finally, general notes on the inventoried habitats were taken, as well as pictures

Observation Stations - Migratory Survey

The observation stations (see Figure 6.12) was located where the field of view is optimal (hill) or open areas. When weather conditions are not appropriate for viewing the targeted species (e.g. pouring rain, fog), inventories will be postponed until weather conditions improve. These conditions will be compiled on a field datasheet.

The field crew will note observations at each station for 60 minutes. Binoculars will be used by the observers to identify birds (raptors, waterfowl and other aquatic birds, passerine, others). The surveys will be done between 8 a.m. and 4 p.m. to maximize the observations, as migrating raptors travel more frequently at this time of the day. The field crew will log all birds observed and the travel characteristics of each individual. These characteristics include the sequential number of the observation, the number of individuals if possible, the activity (e.g. flight, feeding, resting), the flight direction and the approximate distance from the ground. When possible, the age of the birds (adult or juvenile) will also be determined.

The observations were compiled on a field datasheet. Finally, general notes and pictures will be taken on the inventoried habitats.

Figure 6.12: Observation Points for Birds

Conservation Status

The global conservation status of all species was obtained from the IUCN Red List of Threatened Species Version2 2018 while Endangered species Act 2016 was used in compiling the national status

6.3.2.3.2 Result

Avifauna Diversity

Each biogeographically zone is known to support a distinct array of taxa resources including bird. Transmission projects have been recognized as a driver of bird species (UNEP, 2011). It is in light of this that bird study was conducted to document their baseline data.

Species richness

Species richness is the number of different species represented in an ecological community. A total of twenty-five (25) sighted avian species were censored. Some inventoried species include *Delerinis*, *Bleda, Hylia, Malimbus and Sylvietta*. Plate 6.10 is a representative picture of some avian species in the study area.

(A) Corvus albus (B) Merops gularis Plate 6.10 (A-B): Representative Avian Taxa Censored

Secondary forest accounted for the highest bird diversity. Their preference for this habitat could be linked to food resources, breeding grounds and space loving. Species diversity was evaluated for the entire study area and for the habitats. Table 6.28 is the avian check list.

Species	FREQU	ABUN	BEHAVIO	SEX	FLIGHT	ALTITUDE
	ENCY	DANC	UR		DIRECTI	
		E			ON	
Corythornis	1	1	F		NE	0-50
leucogaster						
Deleornis fraseri	1	1	F		NE	50-75
Baeopogon indicator	2	3	R, F, F	M, F	NE	50-75.50-75,50-75
Blenda syndactyla	1	4	F, F, FL, F	F	NE,	0-50,50-75. 0-50
Campethera nivosa	1	1	FL		SE	0-50,50-75
Cisticola anonymus	1	6	R, F, F,	F, F	NE, NW.	0-5-,50-75,50-75. 50-
			FL, F, F			75,50-75
Corvus albus	2	3	F, F, F	М	NE. SW	0-50. 50-75,50-75
Halcyon badia	1	3	R, R, R	F	SW. NE	50-75. 50-75,50-75

 Table 6.28:
 Check list of Bird species in the Project Site

Polyboroides typus	1	2	F, FL		SW	50-75,50-75
Hylia prasina	1	1	FL		SW	75&ABOVE
Malimbus rubricollis	1	1	FL		SW	75 & ABOVE
Malimbus scutatus	1	4	F, R. F. F	F, M,	NE	0-50,0-50. 50-75. O-
				М		50
Merop gularis	2	4	F. FL. F, F		NE. SW	0-50. 50-75. 0-5-,0-5-
Muscicapa cassini	2	2	R. F		NE. SW	0-50. 0-50
Muscicapa comitata	1	3	FL. FL. R		NE. SW	50-75. 50-75
Nectrarinia	3	3	F. R. R		NE	0-50. 50-75, 50-75
cyanolaema						
Cinnyris superbus	2	2	FL. R		SW. NE	50-75. 0-50
Nicator chloris	3	7	R, R, F,	M, M	NE	0-50,0-50,50-75. 0-50
			FL. FL.FL.			
			FL			
Oriolus nigripennis	1	2	R, R		SW	50-75,50-75
Phyllastrephud	2	5	R, FL. RF.	М	NE	0-50,50-75,50-75. 0-
icterinus			FL, R			50. 50-75,0-50
Placeus tricolor	1	6	F, F, FL. F,		NE. SW	0-50,50-75. 0-50. 0-
			F, F			50,0-50
Dyaphorophyia	1	2	R, R	М	NE, SW	50-75,50-75
castanea						
Sylvietta virens	2	4	R. R, R, FL		NE	0-50,50-75. 50-75,50-
						75
Tricholaema hirsute	1	3	FL. FL. FL	F	NE	50-75. 50-75,5x0-75
Muscicapa comiqtata	1	2	F. F		NE	50-75

Species abundance

A total of 79 individuals were censored across the counting and observation stations. The findings revealed that *Nicator chloris, Phyllastrephus icterinus, sylvietta virens and Baeopogon indicator* accounted for about 40% the total counts. Backland 1994 recorded similar species abundance and attributed their dominance to adaptability to a variety of habitats. In terms of habitat, secondary habitat recorded 48 individuals as against 20 for the swamp habitat and 11 for savanna. *Nicator chloris* was the most dominance in both secondary forest and savanna while the *Ploceus tricolor* was the most abundant in swamp forest.

Species Frequency

Bird species frequency was also evaluated. *Phyllatrephusicteinus* was observed six times, *Ploceus tricolor, Bleda syndactylaand Merops gularis* were observed five times each. Noteworthy is the observation of these species in at least two different habitats making them highly adaptable to wider food source as food availability in habitat varies. Those observed in only one habitat are highly specific and enjoy territorial dominance. However, they encounter declining population and range when their habitat is challenged with threats.

Bird Behaviour

Three behavioural tendencies were evaluated at the time of censoring; feeding, resting and on flight.

- A total of twenty (20) individuals were observed in flight
- Twenty-three (23) were observed resting.
- Thirty-two (32) individuals were observed feeding.

In terms of habitats evaluations, the derived savanna had nine individuals each observed to be feeding and on flight as against eleven (11) resting. In the secondary forest habitat, nine were observed feeding, eight on flight and 12 on rest. In the swamp forest habitat, fourteen were feeding, four were on flight and 1 was resting. *Corvus albus* was always observed feeding, *Halycon badia, Oriolus nigripennis and Dyaphorophyia castanea* was observed always resting. *Tricholaema hirsute* on the other hand was always on flight. Derived bushing would adversely impact these species observed as resting always.

Sex evaluation

The bright colouration of the male was used as discriminatory character. A total of 15 individuals were identified as belonging to any of male or female. Seven were female and eight were male. No defined flocking pattern was observed either among the individuals or among the specific sexes in anyone habitats.

Altitude

Flight altitude was also evaluated, and the findings showed that:

- Twenty-seven (27) individuals were flying within 0-50m altitude
- forty-one (41) individuals were observed within the 50-75m range, a height typical of a transmission tower
- nine (9) individuals were seen flying above 75m.
- all individuals of *Tricholaema hirsute*, *Dyaphorophyla nigriipennis*, *Muscicapa comitata* were observed flying in the 50-75 m range only.
- *Hyliaprasina* and *Malimbusrubricolis* had 2 individuals flying in the 75m altitude.

Other species observed in the 50-75 and above the 75m active were in flight. Conversely, there was no species observed exclusively within the 0-50m range. Species within this altitudinal range seems attracted to feeding and resting. Since species in this range were also observed in the 50-75m range, it is most likely that the height of the trees in the habitat is determining factors. They perch on the trees after a long flight duration to rest or when they needed food. A strong correlation coefficient of 0.79 was obtained between altitude and bird behaviour in this study.

Species migration

Some avian species are known to migrate. Avian migration is either regular or irregular (Nomadic interruption or invasions) seasonal movement between north and south. Avian migration is usually driven by food, habitat and changes in weather conditions. These movements are usually between breeding and wintering grounds (Veen *et al.*, 2014). In Nigeria as in other countries in the Northern hemisphere, migratory birds commence this movement between February, March and April to warmer areas and return between August, September and October to winter grounds. Migratory movement often results in high mortality and predation. In this study, *Polybroides typhus* was the sole migratory specie sighted. Details are shown in Table 6.29. February - April is more ideal for migratory bird inventory.

Table 0.23. Details of migratory birds censored in the project area	Table 6.29: Details	of migratory	v birds censored	in the	project area
---	---------------------	--------------	------------------	--------	--------------

Species	Common	IUCN	Habitat	Nesting	Breeding	Major	Conservati	
	Name	status		Grounds	season	threats	on actions	
Polybor	African	LC	SSF	Tree tops and	September to	Habitat	Colony	
oides ty	harrier			branches	march	loss.	protection	
pus	hawk							

Plate 6.11 is a Polybroides typhus, the only migratory species censored in the study area Source: GNL, 2019

Plate 6.11: Migratory Species of the Study Area

Raptors

A diurnal predatory bird that hunts and feed on rodents, insects and small animals exerts strong biodiversity in fluencies on the ecosystem. In such environments, they act as key stone species by regulating their prey population. Some are known as 'Earth Cleaners; for their role in eating up dead carcasses. Raptors are members of Accipitridae, Pandionidae, Sagittaridae, Falconidae and Cathartidae of Acciptriformes, Apodidae and Falconiformes orders (Fowler *et al.*, 2009). In this study, a total of 5 raptor species, belonging to Alcedinida, Ploceidae, and Muscicapidae families were sighted. Table 6.34 shows details of raptors sampled in the study area.

S/N	Species	Common Name	Prey
1	Halcyon badia	chocolate-backed	Seeds, small fish, amphibians, lizards and
		kingfisher	insects
2	Polyboroides typus	Harrier hawk	Rodents, bats, birds, amphibians, lizards and
			insects
3	Merops gularis	black bee-eater	Worms, wood insects, seeds, flies, small fish,
4	Miscicapa comitata	dusky-blue flycatcher	earthworm, lava/pupa of insects and lizards
5	Muscicapa cassini	Cassin's flycatcher	

Table 6.30: Raptors of the Study Area

Source: GNL, 2019

Species of Conservation Interest

Analysis for the conservation status of the species censored in the project area was conducted using the IUCN 2018-2 Red List of Threatened species. None of the sighted species censored in the study area were of conservation interest as all were categorised as Least Concern (LC).

Ecologically Important Habitats for Birds

The importance of the three study habitats for birds was evaluated by rating each habitat against the 8 ecological indicators. Selected characters were based on birds' activities that would be impacted the most during construction and operational phases of the project. Table 6.31 shows the result.

Table 6.31: Ecologically important habitat for birds

Indicator	Seasonally Flooded	Secondary Forest	Derived Savanna
	Forest		
Species Diversity	7	12	9
Flight Altitude above 50m	11	19	13
Species Abundance	11	18	13
Bird Behaviour – Resting	1	12	11
Bird Behaviour – Feeding	14	9	9
Migratory Species	1	0	0
Raptors Species	3	4	2

Flight Direction in relation to	6	5	2						
line route (NW and SW)									

Source: GNL, 2019

Analysis on sensitivity index for the three habitats showed secondary forest as priority habitat for the bird species. There is no statistically significant difference between bird preferences for savanna and swamp habitat although Derived Savanna had higher value importance.

6.3.2.4 Mammals

6.3.2.4.1 Study methodology

Direct observations

Diurnal and nocturnal expeditions to recognizing evidence of Mammalia species presence was undertaken. Formal transect surveys (already established for flora) were used. Transects were walked slowly and all mammals encountered were identified by sight or sound. In addition, small mammals were systematically surveyed by walking transects. Trapped individuals were marked on the ears to identify subsequent recaptures, and then released.

The trapped as well as the sighted mammals were snapped where possible and identified to the lowest possible taxa specialist. Appropriate field data sheets were employed to capture information like species list with scientific, common and local names and abundance. Same sampling transect was adopted for both plant and animal grouped.

Indirect observations

The recorded evidence was represented both by direct (collections and observations) and indirect (tracks, footprints, scats/faeces, feeding activity, tracks, holes/diggings or scratching and carcass). Local land users were also interviewed about mammals they had seen or hunted in the area, and these were identified from pictures in Powell (1993). The local language names were recorded. Other information gathered from the locals includes habitat history, faunal distribution pattern, seasonal migration, harvesting methods and threats to biodiversity in the study area. Table 6.32 presents the sampling methods.

Mammalia Group	Survey Technique	Survey Effort per Vegetation Community							
	Small mammal traps	5 traps over 2 consecutive nights							
	Hair tubes	2 sites- per site							
	Pitfall trapping	2 sites- per site							
Small terrestrial	Line transect	2 sites- per site							
		-5 traps over 2 consecutive nights							
	Cage / B Elliott traps	per sampling site							
Medium terrestrial	Hair tubes	2 sites- per site							
	B Elliott traps	Trapping grid of 0. 1 ha sampling each							
Sampling site, with 5 traps per grid o									
		2 consecutive nights.							
	Fecal pellet counts	Minimum of one plot per 100 m ²							
	Spotlighting	Walking rate of 200metre/ hour.							
Arboreal mammals	Hair tubes	2 consecutive nights per site							
Micro chiropteran	l								
	Harp traps	1 harp trap nights per site							
		45minute continuous recording plus I call							
	Echolocation call	activated all night							
	Trip lining	3 hours commencing from dusk							
Bats	Mist netting	3 hours commencing from dusk							
	Spotlighting and								
Mega chiropteran	listening	Refer to spotlighting for arboreal bats							

Table 6.32: Sampling Methods used for the Mammalian groups

Conservation Statuses

The global conservation status of all species was obtained from the IUCN Red List of Threatened Species Version 2018-2. IUCN categories rank the relative risk of individual taxa becoming extinct in the wild based on a set of standardized criteria.

6.3.2.4.2 Result

A total of 12 Mammalian species were censured in the study area. These include the 7 species that were sighted, and the 5 species censured via indirect evidences. Table 6.33 shows details of the findings.

S/N	Scientific name	Local names	Common name	Family									
		(lgbo)			Swa	Sa	Second	IUC	Nation	End	Breedi	Fee	Thre
					mp	va	ary	Ν	al	emi	ng	ding	ats/C
					Habi	nn	Forest			с			onser
					tat	а							vatio
													n
													Actio
													ns
1	Chaerephon		Nigerian free-tailed bat	Molosidae		1	2	LC	Nil	No	March	Mai	Loggi
	nigeriae										- April	nly	ng
2	Chaerephon		Little free-tailed bat	-		2	1	LC	Nil	No		fruit	
	pumilus											S	
3	Hypsignathus		hammer-headed bat	-			1	LC	Nil	No			
	monstrosus					2							
4	Nycteris arge		Bate's slit-faced bat	Nycteridae			1	LC	Nil	No			
5	Xerus erythropus	Osa	Striped ground squirrel	Sciuridae				LC	Nil	No			

Table 6.33: Result of Mammalian fauna in the study area

6	Atherurus		African Brush-tailed	Hystricidae				LC	Absol	No		Hunti
	africanus		Porcupine						utely			ng
									prohibi			
									ted			
7	Crocidura nigeriae		Nigerian shrew	Soricidae				LC	Nil	Yes		
8	Thryonomys	Oke	Greater cane rat	Thryonomyi	1			LC	Nil	No		
	swinderianus			dae								
9	Crossarchus		ong-nosed kusimanse	Herpestida				LC	Nil	No		
	obscures			е								
10	Epomops franquet		Fruit bat	Pteropodid			1	LC	Nil	No		
	i			ae								
11	Perodicticus potto		Potto	Lorisidae.				LC	Licenc	No		
									е			
12	Scotophilus		African yellow bat	Vespertilion		1		LC	Nil	No		
	dinganii			idae								

6.3.2.4.3 Species diversity

This is the record of all censored taxa in a sampled area. The sighted species in this study area were *Chiroptera*, and *Rodentia* with the exception of *Thryonomys swinderianus* observed in the other habitat. Species were censored in eitherthe savanna or secondary forest. Secondary forest was the preferred habitat for mammals in the stud area. Availability of food, breeding grounds, vegetative cover and the absence of predation and noise are possible attractive features as they provide luxurious habitat for mammals. Their preferred habitats in the study area were encountered at V6, V7, V10 and V13.

6.3.2.4.4 Species abundance

The total number of individual sighted where thirteen (13) with bats accounted for twelve (12) and rat one (1). Six bats individuals were censored in the savanna and another six in the secondary forest. Food resources are perhaps the attraction. The abundance of bats population in relation to pollinators and as prey for important bird species is imperative for efficient ecosystem functioning. However, bats are specifically vulnerable to habitat change such as illumination and physical obstructions caused by electrocution.

6.3.2.4.5 IUCN status

All sighted species were of Least Concern (LC) status using the IUCN Red list 2018 version two criterion. However, two non sighted species *Crocidura nigeriae and Perodicticus potto* are classed in Nigeria Endangered Species Act 2006. as absolutely prohibited and under license respectively. The major threat for the two species is hunting. Also, no endemic species was recorded.

6.3.2.4.6 Habitat of high value

Secondary forest and savanna forest habitats are priority habitats to the mammalian taxon.

There was no species of conservation interest according to IUCN in the study area. However, 2 species were of conservation interest. These are *Atherurus africanus* (absolutely prohibited) and *Perodicticus potto* (license). Both species were found in secondary forest habitat (V6, V10, V7 and V13). Therefore, conservation of this habitat is imperative.

6.3.3 Protected Areas

Across Nigeria, there are at least 23,608.34km² (or 2,360,800 hectares) of land that are designated by national authorities as scientific reserves with limited public access, national parks, natural monuments, nature reserves or wildlife sanctuaries, protected landscapes, and areas managed mainly for sustainable use. The only protected area is the National Park around the project zone is Anambra game reserve which is more than 65km away from the project area. However, the project is to be executed on an existing RoW.

6.3.4 Key Ecological and Social Concerns

Some key ecological and social concerns observed during reconnaissance survey are shown pictorially in Plate 6.12.

(A) Gully erosion sites at Ama Apu Ife (B) Dumpsite at tower (T1) at Ugwuagba Obosi,

(C) Onitsha - Cross section of the encroached line route at OsokeAma'ato community Plate 6.12 (A-C): Some key ecological and social concerns in the project area

The following ecological and social concerns were observed during field gathering process

- High level economic activities under transmission line at Onitsha, Owerri, Ihiala, Aba and Imo axis.
 It is estimated at about 3,000 encroachers will be evacuated;
- The presence of alien/invasive species;
- Poor access route to most communities in Imo State;
- Line route crossing highway roads; and
- Online route which would result in physical and economic displacement.
- Encroachers The areas are prone to flooding and erosion
- Over harvesting of bio resources and illegal felling of woods for fuel wood
- Unsustainable agricultural practices is prevalent in the area
- High incidence of gas flaring is prevalent in some sections of Imo and Abia State
- There is mutual suspicion of grazing land invasion by pastoralists by the natives

6.4 Social Environment

6.4.1 Political context and Admininstrative Structure

Nigeria is a Federal Republic made up of 36 States and a Federal Capital Territory. Nigeria became an independent state in 1960 and a republic in 1963. Information on the administrative structure and political context of the project area is summarize in Table 6.34.

Table 6.34: Administrative structure

System of Government

Nigeria operates a Three tier arms of government. Federal, State and Local Government Area. She operates a Presidential System of Government

Federal Arm	Executive - Implementation of laws, maintenance of law an	d order, initiates bill into parliament. It is							
	headed by a President								
	Legislature- Nigeria operates a bicameral (Senate and Hou	use of Representatives) legislature. They							
	make laws, approves annual budget, ratification of treaty negotiated by the executive and conduc								
	oversight functions on government activities. The senate is headed by Senate Preseident and the								
	House of Representative is headed by a Speaker								
	Senatorial District	House of Representative							

	There are 109 senatorial districts in Nigeria. The project	There are 360 House members. Abia									
	area is represented three senators representing the Central,	has eight House members; Anambra									
	South and North Senatorial district (Abia state), South,	has eleven members while Imo has ten									
	Central and North Senatorial District(Anambra state) and	members. The project cut across four									
	North, West and East (Imo State) senatorial district	Federal constituency in Abia State-									
		Osisioma, Aba north, Aba south and									
		Ugwunagbobo), four in Anambra State.									
		(Ekwusigo, Ihiala, Idemili South and									
		Ogbaru) and eight in Imo State (Owerri									
		West, Owerri North, Oru East, Oru									
		West, Njaba, Owerri Municipal, Mbaitoli,									
		Ngor-Okpala) Federal Constituencies									
	Judiciary - There is the supreme court, appeal court, federal courts, Industrial court, customary courts										
	of appeal and magistrate court. They Interprets laws, protects the right of individuals. It is headed by										
	a Chief Justice										
State Arm of	Executive- There are 36 states in Nigeria and the Federal C	apital Territory. The Executive arm of the									
Government	state government is headed by an elected Governor. The	proposed project traverse 3 states (Abia,									
	Anambra and Imo state).										
	Legislature - Each state operates a unicameral system hea	aded by a Speaker of the State House of									
	Assembly.										
	Judiciary -There is the State High court, customary courts, an	dMagistrate courts. The head of the state									
	judiciary arm is the Chief Judge.										
Local	Executive-The executive arm is headed by a Chairman. This	s arm performs similar functions to that of									
Government	the President and Governor at federal and State levels response	ectively. There is one executive governor									
Arm of	each for Abia, Anambra and Imo state.										
Government	Legislature - The legislature is formed by at least ten wards	s in each LGA. They make bye laws for									
	the LGA. It is headed by a Speaker. The project cut across four LGA houses of assembly in the project										
	the LGA. It is headed by a Speaker. The project cut across four LGA houses of assembly in the project										

6.4.2 Land Planning and Uses

Land ownership in the project areais either by community or family. However, by virtue of the Public Lands Acquisition Law, the state government may acquire land compulsorily for public purpose from individual landowner, subject to the payment of compensation to such landowners. A lot of grazing activities is also practiced by the Fulani pastorals. The wayleave is served by the existing road infrastructure and other rural roadways from which access along the wayleave is provided.

The residential areas in Anambra state axis of the project area are mostly rural settlements except Ogbaru (and Beninthat are urban settlements. The population in the PACs is predominately made up of many low and middleincome earners with few high- income earners in the mentioned urban towns. The residential areas and the surrounding sub-places consist largely of single unit residential homes. On the other hand, the rural settlements such as Ebrumede, Ugbomro, Okha and Elume are sparsely populated with low cost, single unit dwellings on small stands. Majority of theinhabitants of these areas live on low income (see discussion on livelihood).

6.4.3 Demography

Following the 2006 census, the National Population Commission (NPC) published the population of Nigeria as 140,431,790 comprising 71,345,488 males and 69,086,302 females. The NPC estimated annual population growth at 3.2% (NDHS, 2008). The current population, projected at 3.2% annual growth and using the exponential model is 180,735,714, with a density is 198.6 per square kilometre. A higher male population and sex ratio of 103 was recorded for the country. Children (age 0-14) constituted 41.8% of the population while those less than 20 years were 52.3% and those less than 25 years 61.9%. The elderly (65 years and above) were 3.2% of the population. The age dependency ratio was 82.0. Given these proportions, the population of Nigeria is quite young. Average household size in Nigeria is 4.9 (NBS 2012), see Table 6.35a and 6.35b.

 Abia Osisioma Aba North Aba South		Anambra		Anambra			
Osisioma	Aba North	Aba South	Ugwunagbobo	Ekwusigo	Idemili	Ogbaru	Ihiala
					South		

Table 6.35a: Demographic information of Abia and Anambra States

Total Area	198km ²	23km ²	49km ²	108km ²	116km ²	137km ²	453km ²	252km ²
of Land								
Population	1,460/km ²	6,087/km ²	11,427/km ²	1,035/km ²	1,807/km ²	1,997/km ²	652.3/km ²	
Density								
Population	220,662	106,844	427,421	85,371	158,429	206,816	223,317	302,277
Distribution								
Men	110,790	53,016	220,541	42,801	80,053	105,830	115,678	152,200
Women	109,872	53,828	206,880	42,570	78,376	100,986	107,639	150,077

Source: NBS 2012

Table 6.35b: Demographic information of Imo state

	Imo							
	Owerri	Owerri	Oru West	Oru East	Njaba	Owerri	Mbaitoli	Ngor
	West	North				Municipal		Okpala
Total Area of	295km ²	198km ²	93.0km ²	136km ²	84.0km ²	58.0km ²	204km ²	561km
Land								2
Population	474.9/km ²	1,226/km ²	1,713/km ²	1,132/km ²	2,352/km ²	2,976/km ²	1,603/k	
Density in							m²	
persons/km ²								
Population	101,754	176,334	115,704	111,743	143,485	125,337	237,474	157,85
Distribution								8
Men	49,968	87,094	59,108	56,148	72,401	60,882	118,959	78,829
Women	51,786	89,240	56,596	55,595	71,084	64,455	118,515	79,029

Source: NBS (2012)

6.4.4 Relevant Livelihood Indices of the Project Area

Relevant lively hood of people in the study area are presented in Table 6.36.

Table 6.36: Relevant Livelihood indices of the study area

General	Abia	Anambra	Imo
statistics in			
Nigeria			

Total population (2006 C	ensus)	140,431,790	2,845,380	4,177,828	3,927,563
Projected population (207	18 based	19,435,7597.4	39,380,05.9	57,821,13.9	40,748,46.6
on an exponential growt	h rate of				
3.2%)					
Total Area of Land		923,763km ²	4,900km ²	4,865km ²	5,288km ²
Population Density		198.6/km ²	580.698	858.752	742.731
			persons/ km²	persons/ km²	persons/ km²
Population Distribution		L	I	I	
Men		98,742,155.4	19,795,32.43	29,312,89.8	27,354,35.8
Women		95,615,441.9	19,584,73.5	28,508,24.1	27,003,11.328
Children (age 0-14)		41.8%	35.45%	35.5%	36.0%
15–29		28.8%	30.9%	31.3%	30.4%
30 -44		16.56%	16.8%	17.47%	17.111%
Elderly (>65)		3.2%	4.5%	3.9%	4.3%
Literacy rates		59.6	85.1	82.1	74.3
infant mortality level		64.8	126	27.8	17.7 death/1,000
		deaths/1,000	deaths/1,000	deaths/1,000	live birth
		live births	live births	livebirths	
life expectancy		55 years	53Years	51Years	51 years
Youth Literacy in any	Female	63.7	97.2	99.2	97.9
Language	male	79.3	99.4	100.0	96.2

Source: NBS 2012

6.4.5 Community and Household Consultation

Community consultation is an inclusive and culturally appropriate process which involves sharing information and knowledge, seeking to understand the concerns of others project affected persons and building relationships based on collaboration. It allows the community to understand the risks, impacts and opportunities of the project in order to achieve positive outcomes. It involves information dissemination and interaction/dialogues with the host communities of the proposed project.

6.4.6 Conflict Resolution

Civil cases in the communities are arbitrated by the Chiefs-in-Council, Elders-in-Council, religious leaders, traditional priests, age grade, women groups or family heads. On the other hand, inter-communal conflicts are resolved by the representatives (Chiefs) of the communities involved. If it cannot be resolved at that level, the case is taken to the Paramount ruler for adjudication. Criminal cases are referred to the government law enforcement agents. It is of interest to note that most of these communities have never recorded any case of security threat. Nevertheless, the communities have organized themselves into vigilante groups to compliment the security architecture provided by the State.

With respect to the project, predicted sources of conflicts include:

- · Non-recognition of communities as critical stakeholders
- Border land disputes
- Agitation for employment/contracts
- Issue of non -payment of compensation when the existing route was acquired
- Perceived intimidation of the communities
- Perceived "divide and rule tactics"
- Ineffective communication channels

This study did not find any specific current issue that could conceivably lead to full blown conflicts with the TCN. However, agitation remains for issues such as economic displacement, loss of land and livelihood, impact of the project on community health and compensation. The TCN shall build on the existing cordial relationship between her and these communities through enhanced continuous engagement and payment of compensation. It is however canvassed that the TCN should carefully study the existing conflict resolution strategies in these communities for adoption since conflicts are better resolved at this level for sustained peace rather than adjudication in the court of law.

6.4.7 Household and Community Characteristics

Two types of questionnaires were administered – Household and community based. The household questionnaires were administered to all available homesteads within 500m on either side of the RoW. A total of 600 household questionnaires wereadministered and 560 retrieved representing a success rate of 93.3 % (about 53% of total household in project area) while 110 community questionnaires were

recovered out of 118 initially administered representing a success rate of 93.2% (same as percentage of of communities censored). The results shall be presented on LGA basis for ease of clarity.

6.4.8 Population and Sex

The respondent population and sex of the project area are presented in Tables 6.37 (a-c).

Age Bracket	Ekwusigo		Idemili South		Ogbaru		Ihiala	
	Male (%) Female (%)		Male	Female	Male	Female Male		Female
			(%)	%)	(%)	%)	(%)	(%)
1-18	17.4	17.8	17.0	17.7	18.7	18.0	17.6	18.5
19-39	15.2	15.0	14.9	14.5	14.2	14.3	14.6	14.7
40-65	12.3	11.5	13.0	13.1	12.9	12.7	12.9	12.1
>65	5.2	5.6	4.1	4.3	4.2	5.0	4.9	4.7

 Table 6.37a:
 Respondent population age and sex in Anambra State

Persons with age bracket of (1-18) years form a bulk of the population (above 36%) across the LGAs, while those above 65 years of age were the least (below 10%). This implies that 46% of the respondents are in the dependent category while the remaining 54% which fall under the age bracket of 19-65 years are potential labour force that could participate actively during the initial decommissioning of the existing line and construction of the new line.

Age	Osisioma		Aba North		Aba South		Ugwun	agbobo
Bracket								
	Male (%)	Female	Male (%)	Female	Male (%)	Female	Male	Female %)
		(%)		(%)		%)	(%)	
1-18	17.7	17.9	16.8	17.0	16.6	17.1	18.4	18.2
19-39	15.6	15.3	14.5	14.9	14.5	14.6	14.4	14.5
40-65	12.6	11.8	12.8	13.0	13.2	13.3	12.3	12.2
>65	4.3	4.8	4.7	6.3	4.9	5.8	4.9	5.1

Table 6.37b: Respondent population age and sex of Project Communities in Abia State

Persons with age bracket of (1-18) years form a bulk of the population (above 35%) across the LGAs, while those above 65 years of age were the least (below 10%). This implies that 45% of the respondents are in the dependent category while the remaining 55% which fall under the age bracket of 19-65 years are potential labour force that could participate actively during the initial decommissioning of the existing line and construction of the new line.

Age	Ower	rri	Ower	ri	Oru	West	Oru	East	Njab	а	Ower	ri	Mba	Ngor
Bracket	West		North								Munio	cipality	toli	Okpalla
	М	F	М	F	М	F	М	F	М	F	М	F (%)	М	F (%)
	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)	(%)		(%)	
1-18	17.	17.3	16.4	16.	16.	16.3	18.	18.	18.	18.	17.	18.1	17.4	17.7
	1			1	3		1	6	1	2	6			
19-39	15.	15.4	14.8	15.	14.	14.2	14.	14.	15.	16.	14.	14.9	15.2	15.5
	1			1	7		9	2	9	3	7			
40-65	12.	11.5	12.6	12.	13.	13.1	12.	12.	13.	12.	12.	12.4	13.1	13.2
	4			9	4		6	7	7	0	2			
>65	5.8	5.4	5.1	7	5.2	6.8	5.3	3.6	3.1	2.7	4.8	5.3	3.4	5

Table 6.37c:	Respondent	population age	and sex o	of Project	Communities	in Imo	State
--------------	------------	----------------	-----------	------------	-------------	--------	-------

F=female, M=male

Persons with age bracket of (1-18) years form a bulk of the population (above 35%) across the LGAs, while those above 65 years of age were the least (below 10%). This implies that 45% of the respondent are in the dependent category while the remaining 55% which fall under the age bracket of 19-65 years are potential labour force that could participateactively during the initial decomissioning of the existing line and construction of the new line.

6.4.9 Gender of Heads of Household

Information on the gender and number of household heads in the project area is presented in Table 6.38 (a-c).

Table 6.38a: Gender of Head of Res	pondent Households of Pro	pject Communities in A	Anambra State

Gender	Ekwusigo	Idemili South	Ogbaru	lhiala	Total	Average (%)
Male	40	29	38	35	142	83
Female	5	6	9	9	29	17

TOTAL	45	35	47	44	171	
-------	----	----	----	----	-----	--

The 83% male househeads is less than the Nigerian average of 85.7%, though all areas in the line route have more male house heads. Reasons being because of the culture and traditions of the people in the project area which does not promote female leadership.

Table 6.38b: Gender of Head of Respondent Households in Abia State

GENDER	Osisioma	Aba North	Aba South	Ugwunagb	Total	Average (%)
				obo		
Male	33	36	48	47	164	88.2
Female	3	7	6	6	22	11.8
TOTAL	36	43	54	53	186	

The 88.2% male househead is less than the Nigerian average of 85.7%. Nonetheless all areas in the line route have more male house heads. The culture and traditions of the Ibo'sdoess not promote female leadership.

GENDER	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatol	Ngor	Total	Average
	West	North	West	East		Municipal	i	Okalla		(%)
Male	28	22	21	24	21	17	19	22	174	85.7
Female	2	3	4	4	3	3	5	5	29	14.3
TOTAL	30	25	25	28	24	20	24	27	203	

Table 6.38c: Gender of Head of Respondent Households of Project Communities in Imo State

Although the 85.7% male househead is consistent with the Nigerian average of 85.7%, all areas in the line route have more male house head. The reason being that of the culture and traditions of the people in the project area which does not promote female leadership.

6.4.10 Marital Status of Head of Households

Table 6.39 (a-c} shows the marital status of heads of household.

Geomatics	Nigeria Limited
S 476-	

GENDER	Ekwusigo	Idemili	Ogbaru	Ihiala	TOTAL	PERCE	NBS	(2011)
		South				NT (%)	data	for
							Anamb	ora (%)
Single	8	6	9	8	31	18	38.2	
Married	24	18	23	23	88	52	48.2	
Widowed	9	7	10	9	35	21	12.0	
Divorced/Separated	3	4	5	3	15	9	1.6	
TOTAL	44	35	47	43	169	100	100	

Table 6.39 a: Marital Status of Heads of Households of Project Communities in Anambra State

There are more married household heads in all the communities within Anambra state. Most female households in the project area are widows. When compared to the result obtained from NBS, 2011, the result for all statuses slightly fell short except for the single category which revealed a huge margin of about 20.2%.

GENDER	Osisioma	Aba North	Aba South	Ugwunagbo	TOTAL	PERCENT	NBS
				bo		(%)	(2011)
							data for
							Abia (%)
Single	12	14	16	14	56	30	38.1
Married	15	24	30	24	93	50	50.5
Widowed	6	3	5	12	26	14	10.6
Divorced/S	3	2	3	3		6	0.8
eparated					11		
TOTAL	36	43	54	53	186	100	100

 Table 6.39b Marital Status of Heads of Household of Project Communities in Abia State

There are more married household heads in all the communities within Abia state. The result for all statuses slightly fell short of those obtained from NBS, 2011.

GENDER	Owerri	Owerr	Oru	Oru	Nja	Owerri	Mb	Ngor	ΤΟΤΑ	PERCE	NBS (2011)
	West	i	West	East	ba	Municipal	atoli	Okall	L	NT (%)	data for
		North						а			Abia (%)
Single	5	4	3	5	3	4	5	6	35	17	40.7
Married	13	10	12	11	14	7	14	13	94	47	48.2
Widowed	6	7	8	12	6	4	3	3	49	24	10.7
Divorced/	6	4	2	0	1	5	2	3	23	12	0.4
Separated											
TOTAL	30	25	25	28	24	20	24	25	201	100	100

Table 6.39 c Marital Status of Heads of Household in Imo State

There are more married household heads in all the communities within Imo State. The result for all statuses slightly fell short of those obtained from NBS, 2011.

6.4.11 Nature of Marriages

Data obtained for nature of marriages among for households in the project area is presented in Table 6.40 (a-c).

GENDER	Ekwusigo	Idemili	Ogbaru	lhiala	Total	Average
		South				(%)
Monogamous	23	16	23	22	84	95.5
Polyganous	1	2	0	1	4	4.5
TOTAL	24	18	23	23	88	

Table 6.40a: Nature of Marriages among Respondent Households in Anambra State

The 95% of monogamous marriages across all the communities in the project area is above the Nigerian and South-East averages of 76.1 and 70.7% respectively. There were more monogamous marriages across all communities in project area. This could be attributed to the religious (Christianity) belief system which prohibits polygamy. However, the culture of the people as informed by the respondents does not prohibit polygamy.

GENDER	Osisioma	Aba	Aba	Ugwunagb	Total	Average
		North	South	obo		(%
Monogamous	10	23	27	23	83	89.2
Polyganous	5	1	3	1	10	10.8
TOTAL	15	24	30	24	93	

Table 6.40b: Nature of Marriages among Respondent Households in Abia State

The 89% of monogamous marriages across all the communities in the project area is above the Nigerian and South-East averages of 76.1 and 70.7% respectively. There were more monogamous marriages across all communities in project area.

Table 6.40c: Nature of Marraiges among Respondent Households in Imo S	tate
---	------

GENDER	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Total	Average
	West	North	West	East		Municipalit		Okalla		(%
						у				
Monogamous	12	8	7	11	12	6	12	10	78	83.9
Polygamous	1	2	5	0	2	1	2	3	16	16.1
TOTAL	13	10	12	11	14	7	14	13	94	

The 84% of monogamous marriages across all the communities in the project area is above the Nigerian and South-East averages of 76.1 and 70.7% respectively. There were more monogamous marriages across all communities in project area.

6.4.12 Household Size

Information on household size of the communities in each of the LGAs is presented in Table 6.41 (a-c).

Numbers	per	Ekwusigo	Idemili South	Ogbaru	lhiala	(%) Average
household						
1-2		8.4	15.1	11	8.6	10.4
3-5		76	69.1	70.3	66.1	70.7
6-10		13.5	12.3	16.1	19.2	15.3

 Table 6.41a:
 Household size of communities in Anambra

11-15	2.1	3.5	2.6	3.4	2.9
>15	0	0	0	1	0.3

jeomatics Nigeria 📖

The dominant household sizes in the project area are those made up of 3-5 persons and 6-10 persons accounting for about 86% of the households. The findings are in tandem with 2010 NBS statistics which put the average family size in Anambra State at 3.9 persons. At the national level, the number of persons in the size class 3-8 was about 136million.

Numbers per	Osisioma	Aba North	Aba South	Ugwunagbobo	(%)
household					Average
1-2	5.3	20.4	9.3	6.8	10.4
3-5	78.2	63.1	78.4	80.2	74.6
6-10	14.3	13.4	11	8.9	11.8
11-15	4.1	3.1	1.3	4.1	3.1
>15	0	0	0	0	0

Table 6.41b: Household size of communities in Abia

The dominant household sizes in the project area are those made up of 3-5 persons and 6-10 persons accounting for about 86.4% of the households. The findings are in tandem with 2010 NBS statistics which put the average family size in Abia State at 3.7 persons. At the national level, the number of persons in the size class 3-8 was about 136 million.

Number per	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	(%)
household	West	North	West	East		Municipality		Okalla	Average
1-2	13.4	8.4	11.2	15.7	13.6	12.1	12.5	11.7	12.3
3-5	79.2	75.1	69.7	70.8	72.1	68.5	75	70.9	72.7
6-10	6	9.4	13.9	8.4	11.1	17.5	8.4	12.3	10.9
11-15	1.4	7.1	4.2	5.1	3.2	1.9	4.1	5.1	4
>15	0	0	1	0	0	0	0	0	0.1

Table 6.41c: Household size of communities in Imo

The dominant household sizes in the project area are those made up of 3-5 persons and 6-10 persons accounting for about 83.6% of the households. The findings is in tandem with 2010 NBS statistics which put the average family size Imo State at 3.7 persons. At the national level, the number of persons in the size class 3-8 was about 136million.

6.4.13 Ethnic Composition

Ten ethnic groups were observed to be present within the project area. These ethnic groups and their respondent populations in each affected LGA are presented in Table 6.42 (a-c). The data revealed dominance of the landowners (lbo) where the proposed project is to be sited. The results also revealed high relationship between project area and the contiguous ethnic groupings. This was evident in the presence of Anioma, Iteskiri, Ijaw Afemai, Ishan and Isoko.

Ethnicity	Ekwusigo	Idemili	Ogbaru	Ihiala	Total	%
		South				Total
lbo	39	29	36	30	134	78.4
Anioma	2	4	5	4	15	8.8
Edo, Afemai & Ishan	0	0	1	2	3	1.8
Hausa/Fulani	1	0	1	1	3	1.8
ljaw	0	0	0	1	1	0.5
lbibio & Efik	1	1	1	0	3	1.8
lsoko, Itsekirii &	1	0		0	2	1.16
Urhobo						
Tiv & Idoma	0	1	1	2	4	2.3
Ikwerre	0	0	0	1	1	0.5
Yoruba	1	0	1	3	5	2.9

Table 6.42a: Ethnic Groups in Anambra Section of the Project Area

Expectedly, the most represented Ethnic group in the communities within Ananbra State is Ibo, accounting for 78.4 % of the population while the Ikwerre and Ijaw were the least represented group.

Ethnicity	Osisioma	Aba North	Aba	Ugwunag	Total	%
			South	bobo		Average
						(%)
lbo	26	33	38	41	138	74.2
Anioma	5	0	10	7	22	11.8
Edo, Afemai & Ishan	1	1	0	0	2	1
Hausa/Fulani	0	1	0	0	1	0.5
ljaw	0	0	1	0	1	0.5
Ibibio & Efik	0	1	0	2	3	1.6
Isoko, Itsekirii &						
Urhobo	0	0	1	0	1	0.5
Tiv & Idoma	1	0	1	0	2	1
Ikwerre	2	3	3	2	10	5.4
Yoruba	1	4	0	1	6	3.2

Table 6.42b: Ethnic Groups in Abia Section of the Project Area

Expectedly, the most represented Ethnic group in the communities within Abia state is Ibo, accounting for 78.4 % of the population while the Tiv/Idoma and Ijaw were the least represented group.

Ethnicity				L	ocal Gove	ernments			
	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatol	Ngorlk	%
	West	North	West	East		Municipality	i	alla	Average
lbo	14	15	16	19	14	8	12	13	54.7
Anioma	5	2	1	4	1	3	2	3	10.3
Edo, Afemai &									
Ishan	3	0	0	1	1	1	0	1	3.4
Hausa/Fulani	2	2	2	0	0	1	0	1	3.9
ljaw	0	0	1	0	0	2	2	3	3.9
Ibibio & Efik	0	0	1	0	2	1	1	2	3.4
Isoko, Itsekirii &									
Urhobo	0	1	0	0	0	1	0	0	1

 Table 6.42c:
 Ethnic Groups in Imo Section of the Project Area

Tiv & Idoma	0	1	1	2	0	0	3	1	3.9
Ikwerre	4	2	2	1	3	1	2	1	7.9
Yoruba	2	2	1	1	3	2	2	2	7.4

Expectedly, the most represented Ethnic group in the communities within Imo state is Ibo, accounting for 78.4 % of the population while the Isoko, Itsekirii& Urhobo were the least represented group.

6.4.14 Religion

The study revealed that the people are adherents of three religions. These are Christianity, Animist/ African Traditional Religion (ATR) and Islam. Christianity was the most practiced religion withabout 97.6% of the respondents across all communities within the three project states. This was followed by ATR with an average of 2.8%. While about 0.06% were adherents of the Islamic Faith (Figure 6.13 a, b, c).

Imo

Figure 6.13 (a, b, c): Religion of the study area

Majority of the christians in the project area area are catholics. The Islamic and Christianity adherents in the area observe the worldwide traditional Muslim and Christian festivals respectively. Traditional festivals

offer opportunities for the people to seek divined favour, prosperity, bumper harvest, peace, security, long lives and good health for the communities. Such days will be observed as work-freeby TCN and the EPC contractor.

6.4.15 Existing Infrastructures

6.4.15.1 Educational Facilities

During the focus group discussion (FGD), information gathered for educational facilities in the project area is as presented in Tables 6.47(a-c). Generally, result revealed the presence of about 329 educational facilities in the project area. This comprise of 219 primary schools, 106 secondary schools and 4 tertiary institutions. Some of the educational facilities include; Umuota Primary School (Obosi), St Peter's Primary School (Ozobulu), Uzoakwa Central School, Umudike (Ihiala), Umuode Community School (Umuode), Umuneke Community School (Ngor), Ohabiam Primary School 1 and 2 (Ohabiam), Commercial Secondary School (Ozobulu), Christ the King Secondary School, okpalla (Ngor), City Laboratory Comprehensive Secondary School (Ariaria), Chukwuemeka Odumegwu Ojokwu University, uli (Ihiala), and Federal University of Technology, Owerri, Imo State University, Owerri, Alvan-Ikoku Federal College of Education, Owerri Municipal.

Category	Osisioma	Aba North	Aba South	Ugwunagbo	Total
Primary	9	14	20	8	51
Secondary	5	6	11	4	26
Tertiary	0	1	1	0	2
Total	14	21	32	12	79

 Table 6.43a:
 Educational Facilities in Anambra State

As could be seen in Table 6.43a, a total of 79 educational facilities are present in communities within the Anambra state section of the project area. A breakdown revealed the presence of 51 primary schools, 26 secondary schools and 2 tertiary institutions.

Category	Ekwusigo	Idimili South	Ogbaru	lhiala	Total
Primary	15	12	15	10	52
Secondary	13	7	9	6	35

Table 6.43b: Educational Facilities in Abia State

Tertiary	0	0	0	0	0
Total	28	19	24	16	87

jeomatics Nigeria

As could be seen in Table 6.43b, a total of 87 educational facilities are present in communities within the Abia state section of the project area. A breakdown revealed the presence of 52 primary schools, 35 secondary schools and no tertiary institution.

Table	e 6.43c: E	ducational	Facilitie	s in Imo	State	
atogony	Oworri	Oworri	Oru	Oru	Niaba	Oworri

Category	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Total
	West	North	West	East		Municipal		Okalla	
Primary	20	15	10	18	14	20	12	7	116
Secondary	7	6	5	7	5	8	4	3	45
Tertiary	0	1	0	0	0	1	0	0	2
Total	27	22	15	25	19	29	16	10	163

As could be seen in Table 6.43c, a total of 163 educational facilities are present in communities within the Imo state section of the project area. A breakdown revealed the presence of 116 primary schools, 45 secondary schools and 2 tertiary institutions.

Generally, the manpower in virtually all the schools in the project area are inadequate with an average teacher/student ratio of over 1:38. About 43 % of the existing schools lack basic facilities like water supply and toilet. In addition, instruction materials are grossly inadequate.

6.4.15.2 Water

Information on the number of boreholes as well as protected streams in each of the project LGA is presented in Table 6.44 (a-c). A total of 294 are present in the project area. This comprises of 268 private boreholes, 21 communal boreholes and 5 protected/unprotected springs. The number of privately-owned boreholes is higher compared to communally owned ones. All the functional boreholes rely more on AC powered sources to pump water. It was also observed that the communally owned boreholes have obsolete pipes and fittings.

Category	Ekwusigo	Idimili South	Ogbaru	Ihiala	Total
Communal boreholes	3	0	3	0	6
Private boreholes	21	18	18	12	69
Protected spring (wells)	1	0	3	1	5

Table 6.44a Number of water sources across the project area in Anambra State

As could be seen in Table 6.44a, a toal of 69 private boreholes is present in communities within Anambra section of the project area, with 6 communal boreholes and 5 protected springs (wells).

 Table 6.44b Number of water sources across the project area in Abia State

Category	Osisioma	Aba South	Aba North	Ugwanag	Total
Communal boreholes	2	3	0	2	7
Private boreholes	19	14	18	17	68
Protected spring (wells)	0	0	0	0	0

As could be seen in Table 6.44b, a toal of 68 private boreholes is present in communities within Abia section of the project area, with 7 communal boreholes and no protected springs (wells).

Table 6.44c: Number of	water sources across the	project area in Imo State
------------------------	--------------------------	---------------------------

Category	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Total
	West	North	West	East		Municipality		Okalla	
Communal	1	2	0	3	0	2	0	0	8
boreholes									
Private	19	13	17	18	13	29	12	10	131
boreholes									
Protected spring	0	0	0	0	0	0	0	0	0
(wells)									

Source: GNL 2019

As could be seen in Table 6.44c, a toal of 131 private boreholes is present in communities within Abia section of the project area, with 8 communal boreholes and no protected springs (wells).

6.4.15.3 Household Facilities

Several facilities were surveyed to be present in the households of the project area. These include power generators, televisions, cars/trucks, refrigerators, etc. (Table 6.45a-c). Lighting and cooking equipment were the most frequently found in the households of the project area. Most of these facilities are meant to improve the livelihood of the households while others are income generating. They serve as indices to infer the quality of life of the PAPs.

FACILITIES	Ekwusigo	Idemili South	Ogbaru	lhiala	TOTAL
Power generator	12	15	10	13	50
Gas stove/Kerosene	13	15	12	11	51
Refrigerator	10	13	12	9	44
Television	15	14	13	8	50
Radio/cassette/music	16	13	15	6	50
system					
Car/Truck	8	8	9	4	29
Motorcycle	3	5	2	2	19
Bicycle	1	3	0	1	5
Plow	0	0	0	0	0
Cart	0	0	0	0	0
House in town	2	2	1	2	7
Land in town	2	1	3	1	7
TOTAL	82	89	77	57	305

Table 6 45a	Household Facilities	among Res	nondents in	Anambra State
	i lousenoiu i aciiilles	among ites	pondenta m	

A total of 305 facilities were reported to be owned by PAPs in communites within Anambra state of the project area. Gas stove/Kerosene and Radio systems recorded the highest amount while facilities like carts and ploughs were absent.

Table 6.45b: Household Facilities among Respondents in Abia Stat	te
--	----

FACILITIES	Osisioma	Aba North	Aba South	Ugwunagbo	TOTAL
Power generator	12	14	15	16	57
Gas stove/Kerosene	15	13	17	13	58

Refrigerator	10	9	13	12	44
Television	14	11	10	13	48
Radio/cassette/music	17	9	10	17	53
system					
Car/Truck	2	3	5	5	15
Motorcycle	3	2	2	4	11
Bicycle	1	2	1	0	4
Plow	0	0	0	0	0
Cart	0	0	0	0	0
House in town	2	2	2	2	8
Land in town	1	1	1	3	6
TOTAL	77	66	76	85	304

A total of 304 facilities were reported to be owned by PAPs in communites within Abia state of the project area. Gas Power generator and Gas stove/Kerosene recorded the highest amount while facilities like carts and ploughs were absent.

FACILITIES	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	TOTAL
	West	North	West	East		Municipality		Okalla	
Power	16	13	14	11	8	20	12	11	105
generator									
Gas	12	15	15	9	11	21	11	9	103
stove/Kerosene									
Refrigerator	14	14	10	12	8	17	9	9	93
Television	15	13	9	15	8	20	11	10	101
Radio/cassette/	16	10	12	16	3	22	13	12	104
music system									
Car/Truck	10	4	4	6	2	14	9	3	52
Motorcycle	4	5	2	3	3	5	4	2	28
Bicycle	1	2	1	0	2	2	1	1	10
Plow	0	1	0	0	0	1	0	0	2

Table 6.45c: Household Facilities among Respondents in Imo State

Cart	0	0	0	0	0	0	0	0	0
House in town	3	3	2	2	2	3	2	1	18
Land in town	2	1	1	4	1	3	1	1	14
TOTAL	93	81	70	78	48	128	73	59	630

Source: GNL, 2019

A total of 630 facilities were reported to be owned by PAPs in communites within Imo state of the project area. Power generator and Radio systems recorded the highest amount while facilities like carts and ploughs were the least owned.

6.4.16 Household Construction Materials

The types of materials used in constructing household dwellings were also surveyed. These materials are those used in roofing, walling and flooring. These parameters are an indirect index of life quality.

6.4.16.1 Roofing materials

Iron sheets and aluminum accounted for a high percentage of the roofing materials in the area. The least used roofing material is the bamboo/reed. The percentage of uncompleted building could be indicative of the prevailing economic situation in the area. Results on the roofing materials is presented in Table 6.46 (a-c).

Material	Ekwusigo	Idimili	Ogbaru	Ihiala	Total	Average (%)
		South				
Corrugated Iron Sheets	19	21	16	18	74	68.5
Thatch	5	0	2	4	11	10.2
Asbestos	1	3	0	1	5	4.6
Bamboo/reed	2	0	0	0	2	1.9
Aluminum roofing	0	2	7	2	11	10.2
Nil / No roof / Not completed	1	1	3			4.6
				0	5	
Total	28	27	28	25	108	

Table 0.40a. Rooting materials of Houses in Communities within Anambra State	Table 6.46a: Roofing	Materials of Houses	in Communities	within Anambra State
--	----------------------	---------------------	----------------	----------------------

Material	Osisioma	Aba	Aba	Ugwanag	Total	Average (%)
		North	South			
Corrugated Iron Sheets	17	15	19	15	66	66.7
Thatch	1	2	3	2	8	8.1
Asbestos	0	1	3	0	4	4.0
Bamboo/reed	2	0	0	3	5	5.1
Aluminum	5	3	1	2	11	11.1
Nil / No roof / Not completed	1	2	0	2	5	5.1
Total	26	23	26	24	99	

Table 6.46b: Roofing Materials of Houses in Communities within Abia State

Table 6.46c: Roofing Materials of Houses in Communities within Imo State

	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Total	Average
Material	West	North	West	East		Municipality		Okalla		(%)
Corrugated	10	0	0	5	3	10	6	5		35
Iron Sheets		9	0	5					56	
Thatch	2	1	2	1	2	6	1	1	16	10
Asbestos	0	1	0	2	0	0	2	3	8	5
Bamboo/reed	0	0	0	0	0	0	0	0	0	0.0
Aluminium	8	3	5	7	5	11	8	7	54	33.8
Nil / No roof /	3				1	6	5	5		16.3
Not		2	1	3						
completed									26	
	23	16	16	18	11	33	22	21	160	

Source: GNL Survey, 2019

Over 60% of houses in the project area are roofed with corrugated Iron Sheets except in communities in Imo State with a bulk of the buildings (33.8%) had also roofed with aluminium sheet.

6.4.16.2 Walling Materials

On the average, the use of concrete blocks as walling materials is predominant in the study area. However, the use of thatch is most pronounced in some communities. It was also observed that woods

were not recorded as walling material. Results of household walling materials are presented in Table 6.47 (a-c).

Walling Material Type	Ekwusigo	Idimili	Ogbaru	Ihiala	Total	Average
		South				(%)
Mud	2	1	1	0	4	3.7
Mud bricks	0	0	0	1	1	0.9
Wood	0	0	0	0	0	0.0
Thatch	4	1	1	3	9	8.3
Compacted (combine)	0	0	0	1	1	0.9
Concrete (blocks)	21	25	26	20	92	85.2
Others (Taupulin, zinc)	1	0	0	0	1	0.9
TOTAL	28	27	28	25	108	

Table 6.47a: Walling Materials of Houses in Communities within Anambra State

Concrete block was the predominant household walling material used for the construction of houses in communities within Anambra state. On the other hand, mud bricks, and compacted materials were the least used while no house within this section was built with wood. This is an indication that PAPS in this section of the project area have a good standard of living.

 Table 6.47b:
 Walling Materials of Respondent Houses in Abia State

Walling Material	Osisioma	Aba North	Aba	Ugwunagbobo	Total	Average
Туре			South			(%)
Mud	0	2	2	3	7	7.0
Mud bricks	3	0	0	1	4	4.0
Wood	0	0	1	0	1	1.0
Thatch	0	1	1	1	3	3.0
Compacted (combine)	0	0	0	1	1	1.0
Concrete (blocks)	23	21	22	18	84	84.0
Others (Taupulin, zinc)	0	0	0	0	0	0.0

The discussion is same as for communities within Anambra State.

Walling	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Total	Average
Material	West	North	West	East		Municipality		Okalla		(%)
Туре										
Mud	2	2	2	1	1	4	2	1	15	9.4
Mud bricks	1	3	1	1	0	2	1	2	11	6.9
Wood	1	0	0	0	0	0	0	1	2	1.3
Thatch	0	1	0	0	2	2	1	1	7	4.4
Compacted	0	0	0	2	0	1	2	1	6	3.8
(combine)										
Concrete	19	10	13	14	8	21	12	15	112	70
(blocks)										
Others	0	0	0	0	0	3	4	0	7	4.4
(Taupulin,										
zinc)										

Table 6.47c:	Walling Materials	of Respondent	Houses in Imo State
--------------	-------------------	---------------	---------------------

Source: GNL Survey 2019

The discussion is same as for communities within Anambra state.

6.4.16.4 Flooring Material

Five flooring materials were observed to be in use in the entire project area details of the flooring materials are presented in Table 6.48 (a-c).

Table 6.48a:	Flooring	Materials	of Houses	in communit	ties within	Anambra State
	1 looinig	materials	011100303			

Material type	Ekwusigo	Idemili	Ogbaru	Ihiala	Total	Average
		South				(%)
Earth/sand/dirt/straw	4	2	1	3	10	9.3
Smoothed mud	2	0	1	2	5	4.6
Smooth cement	14	19	19	16	68	63
Wood/planks	1	0	0	0	1	0.9
Ceramic tiles	7	6	7	4	24	22.2

Smooth cement is the most used walling materials used for houses in communities within Anambra state representing about 63% of the flooring materials while wood and plank recorded the least.

Material type	Osisioma	Aba	Aba	Ugwunagbo	Total	Average
		South	North			(%)
Earth/sand/dirt/straw	1	1	2	3	7	7.2
Smoothed mud	1	0	2	2	5	5.2
Smooth cement	14	16	15	14	59	59.2
Wood/planks	1	1	0	1	3	3.2
Ceramic tiles	9	5	7	4	25	25.2

6.48b: Flooring Flooring Materials of Houses in communities within Abia State

Smooth cement is the most prevalent walling materials used for houses in communities within Abia State, representing about 59.2% of the flooring materials while wood and plank recorded the least.

6.48c:	Flooring	Materials of	Respondent	Houses in the	e Proiect Area ir	Imo State

Material type	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Total	Average
	West	North	West	East		Municipality		Okalla		(%)
Earth/sand/dirt/straw	1	2	3	2	1	5	4	2	20	12.5
Smoothed mud	1	3	0	1	2	5	5	2	19	11.9
Smooth cement	15	8	12	12	7	16	10	12	92	57.5
Wood/planks	1	1	0	1	0	2	1	2	8	5.0
Ceramic tiles	5	2	1	2	1	5	2	3	21	13.1

Source: GNL. 2019

Smooth cement is the most prevalent walling materials used for houses in communities within Imo State, representing about 57.5 % of the flooring materials, while wood and plank recorded the least.

6.4.17 Transport Facilities

Atani road Plate 6.13: Linked roads to TL

The project area is traversed by several roads.

There are about 26 linked roads from any of the three roads to the transmission line as shown in Table 6.49.

Table 6.49:	Details	of	Roads	in	the	Pro	iect	Area

	Name of Road	Length (m)	Land Use
	Umunekelhitte road	2,499.27	Farming and Built-up Area
	Along Umu Owa	1,857.73	Built-up Area
Owerri-Aba	Emi Agabrii road	1,147.21	Farming
Express Way	Umuakpara road	2,226.48	Built-up Area and Farming
	Owerri Ring Road	1 000 76	Built-up Area, riparian vegetation and
	Gwern King Koad	4,000.70	farmland
	Omenazust	381.712	Built-up Area
	Portharcourt road	386.46	Farming
Port Harcourt-	Umojima road	1,096.52	Built-up Area and Farming
Aba Express Way	AbayiAriara road	374.87	Built-up
	Deeper Life Road, Aba	355.34	Built-up Area
	Faulk Road	381.34	Built-up area
	Awoomuma Rd,	3,546.98	Built-up area

Owerri – Onitsha	Isieke Road	2,909.32	Built-up area, forest, farmland
express Way	Mgbidi Omima	3 266 17	Built-up area farmland and riparian
	powerline Rd,	3,200.17	vegetation
	Uli Powerline Rd,	4,467.34	Build-up
	Ihiala Orlu Rd,	2,412.86	Built up area
	Okija poweline Rd,	717.78	Built up area
	Ozubulu Rd	1,484,33	Built up area
	Oraifite Rd,	286.56	Built up area and riparian forest
	Old Oba Rd,	195.34	Built up area
	New Oba	475.32	Built up area
	Obosi Rd,	437.85	Built up area and riparian vegetation
	Awada powerline Rd.	339.98	Built up area

Public buses, cars and motorcycles are the major means of transportation in the project area. Public motor vehicles ply roads that link the project communities to major towns while motorcycle transport is used for shorter distances and unpaved roads.

6.4.18 Communication Facilities

The people in all the communities have access to mobile communication through fixed wireless lines provided by communication service providers like MTN, GLO, AIRTEL and 9 Mobile. There are postal services in most of the communities in Abia. But there are no postal services in the communities in Anambra and Imo, but the inhabitants obtain news about other parts of Nigeria and the world through radio, television and the mobile handsets.

6.4.19 Health

This section presents the baseline health data based on information generated from sampled groups in the study communities. Data obtained from these facilities were subsequently compared with state and National data and averages that are available.

Health Facilities

jeomatics Nigeria 📖

There are about 53 health facilities in the project area. This comprises of twenty-four (24) Primary Health Centres (PHC) and twenty-nine (29) hospitals. Majority of the hospitals are privately owned. The health facilities provide both outpatient and in-patient services. Some of the health facilities in the project area include; General Hospital at Oriafite, Urban Hospital and Maternity, Comprehensive Health Centre, General Hospital at Ihiala, Government Cottage Hospital at Osisioma, Bethel Hospital in Aba, New Cross Hospital Limited, Owerri North, Federal Medical Centre at Owerrri, and Imo University Teaching Hospital annex. The number of health facilities present in each LGAs of the project area is presented in Tables 6.50 (a-c).

Table 6.50a: Number of health facilities in Host communities of Anambra state

Category	Ekwusigo	Idimili South	Ogbaru	lhiala	Total
PHC	2	2	2	1	7
Hospital	2	1	1	1	5
Total	4	3	3	2	12

The health facilities in the communities within Anambra State are twelve (12) in total. This comprises of seven (7) Primary Health Centres (PHC) and five (5) hospitals.

Category	Osisioma	Aba North	Aba South	Ugwunagbobo	Total
PHC	2	2	2	1	7
Hospital	1	5	4	2	12
Total	3	7	6	3	19

Table 6.50b: Number of health facilities in Host communities of Abia State

The health facilities in the communities within Abia state are 19 in total. This comprises of seven (7) Primary Health Centres (PHC) and twelve (12) hospitals.

Table 6.50c: Number of health facilities in Host communities of Imo State

Category	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Total
	West	North	East	West		Municipality		Okalla	

PHC	2	1	2	1	0	2	1	1	10
Hospital	2	1	1	1	2	2	1	2	12
	4	2	3	2	2	4	2	3	22

Source: GNL 2019

The health facilities in the communities within Imo state are 22 in total. This comprises of ten (10) Primary Health Centres (PHC) and twelve (12) hospitals.

Prevalence of Diseases in in the study area Causes of Morbidity and Mortality in the study Area

The commonest and most prevalent diseases affecting all age groups in the communities are Malaria Fever (39.2%), Upper Respiratory Tract Infection (19.2%), Typhoid Fever (10.5%), Diarrhea/vomiting (5.2%) and Hypertension (7.2%). Other common ailments in across all project LGAs: include Worm Infestation, Diabetes Mellitus, Lower Respiratory Tract Infection, and Arthritis. The high prevalence rate of malaria could be explained by the following factors:

- The abundance of mosquitoes (the insect vector of malaria, which consists predominantly of *Plasmodium falciparum*, and less of *Plasmodium vivax* and *Plasmodium malariae*);
- Presence of stagnant water;
- Absence of pest control practices, and
- Inadequate prophylactic drug supply.

A cursory look at Table 6.51 shows that water related diseases have the highest prevalence percentage. Upper Respiratory Tract Infection has the second highest prevalence occurrence in the region. This could be due to bush clearing/ burning and unpaved surfaces.

S/N	Disease	Prevalence (%)
1	Malaria Fever	39.2
2	Upper Respiratory Tract Infection	19.2
3	Typhoid Fever	10.5
4	Hypertension	7.2
5	Vomiting and Diarrhoea	5.2
6	Worm Infestation	5.1

Table 6.51: Prevalence of I	Diseases in the	project area
-----------------------------	-----------------	--------------

7	Diabetes Mellitus	4.2
8	Lower Respiratory Tract Infected	4.3
9	Arthritis	2.4
10	Others	2.7

Source: GNL 2019

Sexual Activities and Knowledge of Sexually Transmissible Infections (STI)

Human Immunodeficiency Virus (HIV) and Acquired Immune Deficiency Syndrome (AIDS) have become very important public health concern in Nigeria. However, there are no data on sexual practices, knowledge and beliefs about HIV/AIDS and other Sexually Transmissible Infections (STIs) in the study area. Therefore, several questions were included in this study to ascertain the level of their awareness about these health problems. Both men and women were asked about their sexual practices. They were also asked about what they believed was the mode of transmission of HIV and where they sought treatment for STIs. Condom use and availability were also reported. The respondents did not divulge information on the numeracy of sexual partners they keep.

Condom Availability and Use

Condoms serve as a good barrier to the transmission of HIV and other sexually transmissible infections. Respondents were asked about condom use. The data presented is limited to those who have had sexual intercourse. Condom was readily available in over 90% of the chemist stores (where one is available) across all Project communities. However, the average number used weekly could not be accurately verified. Survey across all three project LGAs indicate that overall, less than 30% of males and 35% of females aged above 15 years had never used condom before while over 20% of males and 30% females claimed they used condom only occasionally, mainly either for prevention of pregnancy or STI. Only less than 10% of sexually active males and 2% females use condom all the time (i.e. during every episode of sexual intercourse). Condom use by those aged above 65 is virtually absent. Amongst respondents who use condoms, majority were less than 30 years. Condom use was also considerably higher among those who have never married compared to those currently married.

Immunization Status in Children

The proportion of children under 5 years old immunized against DPT, BCG, OPV and Measles were 80% across all sampling stations. These figures were above the national target of 70% (BCG and TT for

pregnant women) and over 65% for the other antigens in the National Programme on Immunization. Oral Polio Vaccine (OPV) was the most commonly received vaccine in all the project communities. This may partly be due to the OPV given during the National Immunization days (NIDs) set aside by the Federal Ministry of Health through the National Programme on Immunization every year. Each child below 5 years is expected to receive two drops of OPV during each round of NID. The fact that the few health facilities available in the communities had inadequate record of immunization is an indication of the low practice of routine immunization.

6.4.20 Land Use

Land planning and uses

Land ownership in the project site is either by community or family. However, by virtue of the Public Lands Acquisition Law, the state government may acquire land compulsorily for public purpose from individual landowners, subject to the payment of compensation to such landowners. The wayleave is served by the existing road infrastructure and other rural roadways from which access along the wayleave is provided. The residential areas are mostly rural settlements except Ohabiam, Owerri, Ala-Oji, Ariaria, Aba and Umuocham which are semiurban/urban settlements. The population in the PACs is predominately made up of low and middle with few hig- income earners in the mentioned urban towns. Access to financial institution especially in the rural communities is very poor as there are none within these areas. The residential areas and the surrounding sub-places consist mostly of single unit residential homes. On the other hand, the rural settlements (all other communities except the listed semiurban/urban) are sparsely populated with low cost, single unit dwellings on small stands. Majority of theinhabitants of these areas live on lower income (see discussion on livelihood). Table 6.52 shows the land use pattern of the project area.

Type of Land use pattern	Percentage occupied (ha)	Notable communities in the RoW
Built-Up Area	13.1	
Heavy Forest	35.3	
Light Forest	20.3	Umuode, Obosi, Ariaria, Aba, Owerri,
Plain land	21.35	Ihiala, Ohabiam, Ozubulu, Ngor, Ala Oji
Cropland	7.4	
Water Bodies	2.58	
	100.00	

Table 6.52: Land use pattern of the project area

Figure 6.14 represents the land use pattern of the project area.

Figure 6.14: Land Use Map

6.4.21 Educational Attainment

The educational attainment among respondents in the Project LGAs is presented in Table 6.53 (a-c).

	Ekwusigo	Idimili	Ogbaru	lhiala	Average
		South			(%)
No formal education	16.2	17	15	16	16
Primary	42.1	43	40	39	41
Secondary	30.2	31	30	22	28
CoE and polytechnic	6.4	4	7	12	7
University Degree	5.1	5	8	11	7

Table 6.53a: Educational Status among the respondents in Anambra State

The literacy level in the communities in Anambra state of the project area is 84%. This is the number of respondent populations having at least a first school living certificate. About 16% of the PAP have no formal education.

Table 6.53b:	Educational St	atus among	the respondents	in Abia State
--------------	----------------	------------	-----------------	---------------

	Osisioma	Aba	Aba	Ugwunagbo	Average
		North	South		(%)
No formal education	16	14	20	13.5	16
Primary	34	37	39	45.5	39
Secondary	32	33	26	25	29
CoE and polytechnic	10	6	8	6.2	7
University Degree	8	10	7	4.8	7

The literacy level in the communities in Abia state of the project area is 84%. This is the number of respondent populations having at least a first school living certificate. About 16% of the PAPs have no formal education.

	Ethiope	Okpe	Sapele	Ughelli	Uvwie	Ikpoba	Mbatoli	Ngorokalla	Average
	West			North		Okha			(%)
No formal	15	20	10	16	18	14	21	12	16
education									
Primary	40.8	40	41	42	41.7	42	35	48	41
Secondary	29	29	29	31	30.3	37	33	35	32
CoE and	6	5.4	11	5.3	5	4	6	3	6
polytechnic									
University	9.2	5.6	9	5.7	5	3	5	2	5
Degree									

Table 6.53c: Educational Status among the respondents in Imo State

Geomatics Nigeria

About 84% of the respondent population in the communities in Imo statehave atleast a first school living certificate while the remaining 16% have no formal education.

6.4.22 Economic and Livelihoods of Households

Occupation

Trading is the economic main stay of the people in the project area. The most commonly cultivated crops in the project area are cassava, maize, banana, okra, pepper and vegetables. Fruit trees are also cultivated in this area. They include mango, cashew, and guava among others. The percentage occupational distribution of the people of the project area is as shown in Tables 6.54 (a-c).

|--|

	Ekwusigo	Idemili South	Ogbara	Ihiala	Average
OCCUPATION					(%)
Farming	21	25	27	24	24
Pastoralist	10	9	11	8	10

Self-employed	8	6	7	6	7
Private employee	9	8	7	10	9
Public employee	11	10	8	8	9
Trading	40	42	40	44	41

Source: GNL

According to Table 6.54a, a majority of the PAPs in communities within Anambra state are into trading (41%), followed by farming (21%) while the self employed (7%) formed the least group

	Osisioma	Aba	Aba	Ugwunagbobo	Average
Occupation		North	South		(%)
Farming	8	27	7	41	21
Pastoralist	10	11	8	9	9
Trading	43	39	40	9	33
Private employee	20	6	25	11	15
Public employee	12	8	12	6	10
Self-employed	7	9	8	24	12

Table 6.54b: Occupational Distribution of Respondents in Abia

A majority of the PAPs in communities within Abia state are into trading (33%), followed by farming (21%) while the pastorialist (9%) formed the least group. This group are made up of mostly Fulani herders that came from the north to feed their cattle.

Table 6.54c: Occupational Distribution of Respondents in Imo

Occupation	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Average
	West	North	West	East		Municipality		Okalla	(%)
Farming	24	25	21	25	30	28	27	26	26
Pastoralist	7	8	7	6	5	4	7	8	6
Trading	44	42	44	39	42	48	45	48	44
Private	9	8	10	10	7	5	6	7	8
employee									

Public	8	8	10	11	8	7	8	6	8
employee									
Self-	8	9	8	9	8	8	7	5	8
employed									

Source: GNL Survey 2019

A majority of the PAPs in communities within Imo state are into trading (44%), followed by farming (26%) while the self employed, private employee, Self- formed the least group representing 8% of the population each

6.4.23 Artisanal Skills

The respondents were asked to confirm the existence of twelve artisanal skills (skills related to the proposed project) within their communities using a scale of 0-20 as 1, 21-40 as 2, 41-60 as 3, 61-80 as 4, 81-100 as 5 and >100 as 6. The result indicated the presence of persons with all the skills in the project area. However, majority of the artisanal skills in the area were Commercial Farm workers, maison, Painting, carpentry, taxi driving and plumbing. See Tables 6.55 (a-c).

Skills	Ekwusigo	Idimili South	Ogbara	Ihiala	Total
Experienced pylon assembler	2	1	1	2	6
Carpenter	5	2	3	3	13
Welder	1	1	0	2	4
Electrician	1	1	2	1	5
Truck driver	1	1	2	4	8
Taxi (car, tricycle, motocycle)	3	2	2	4	11
Heavy machinery operator (shovel operator, caterpillar, etc.)	1	0	0	0	1
Mechanic	2	3	2	3	10
Mason	3	4	4	6	17

Table 6.55a Populatio	n with skills related to	TCN work in Host co	ommunities within	Anambra State
-----------------------	--------------------------	---------------------	-------------------	---------------

Painter	2	3	5	5	15
Chainsaw operator	1	0	0	1	2
Commercial Farm workers	12	17	13	10	52
Plumbing	3	3	3	4	13
Total	37	38	37	45	157

According to Table 6.55a, 157 respondents in communities within Anambra state are into artisanal activities that are related activities required for the proposed project. A majority of the respondents are commercial farm workers (52) available for employment in access road clearing during the preconstruction phase of the project and RoW maintenance during the operation phase.

Skills	Osisioma	Aba North	Aba South	Ugwunagbobo	Total
Experienced pylon	1	0	1	1	3
assembler					
Carpenter	1	1	1	0	3
Welder	1	2	3	1	7
Electrician	0	0	2	3	5
Truck driver	1	1	1	2	5
Taxi (car, tricycle,	0	0	1	0	1
motocycle)					
Heavy machinery operator	0	0	2	0	2
(shovel operator, caterpillar,					
etc.)					
Mechanic	1	1	0	0	2
Mason	3	2	2	3	10
Painter	2	2	4	3	11
Chainsaw operator	1	1	0	0	2
Commercial Farm workers	7	10	10	8	35
Plumbing	1	0	0	1	2

Table 6.55b: Population with skills related to TCN work in Host communities within Abia State

Total	19	20	27	22	88
-------	----	----	----	----	----

According to Table 6.55b, 88 respondents in communities within Abia state are into artisanal activities that are related activities required for the proposed project. A majority of the respondents are commercial farm workers (35) available for employment in access road clearing during the preconstruction phase of the project and RoW maintenance during the operation phase.

Skills	Owerri	Owerri	Oru	Oru	Njaba	Owerri	Mbatoli	Ngor	Total
	West	North	West	East		Municipality		Okalla	
Experienced pylon	1	1	0	0	1	0	1	1	5
assembler									
Carpenter	2	2	3	3	3	5	3	2	23
Welder	2	2	3	3	3	1	1	1	16
Electrician	1	2	4	2	3	1	3	1	17
Truck driver	1	1	1	2	2	2	2	1	12
Taxi (car, tricycle,	3	2	1	3	2	3	3	2	19
motocycle)									
Heavy machinery	0	0	0	2	0	0	1	3	6
operator (shovel									
operator, caterpillar,									
etc.)									
Mechanic	1	2	1	1	0	0	1	2	8
Mason	1	2	3	2	1	2	2	2	15
Painter	2	1	2	1	1	5	4	2	18
Chainsaw operator	0	1	0	2	0	0	1	0	4
Commercial Farm	12	8	15	13	5	12	9	11	85
workers									
Plumbing	1	2	1	1	1	4	1	1	12
Total	27	26	34	35	22	35	32	29	240

Table 6.55c: Population with skills related to TCN work in Host communities within Imo State

Source: GNL, 2019

According to Table 6.55c, 240 respondents in communities within Anambra State are into artisanal activities that are related activities required for the proposed project. A majority of the respondents are commercial farm workers (52) available for employment in access road clearing during the preconstruction phase of the project and RoW maintenance during the operation phase.

6.4.24 Income

Crop farming, trading, artisanship, livestock rearing, processing of farm produce and self-employment are the income generating activities of the project area. Annual income level of respondents in the project area is presented in Table 6.56 (a-c).

		Ekwusigo	Idimili South	Ogbara	Ihiala	
S/N	Annual Income	Frequency	Frequency	Frequency	Frequency	Average
	(Naira)	(%)	(%)	(%)	(%)	(%)
1	Less than 100,000	18.5	20.2	19	14.2	18
2	100,000 –199,999	11.1	17.6	15.8	14.2	14.7
3	200,000 –	28.3	38.2	40.2	47.9	38.7
4	300,000 –399,999	27.4	12.4	14.5	12.7	16.8
5	400,000 –499,999	9.7	9	8.8	9.9	9.4
6	500,000 +	5	2.6	1.7	1.2	2.6

Table 6.56a: Income Level in Anambra State

A majority of the respondents (38.7%) in communities within Anambra state section of the project area earn 200,000 – 299,999 annually, while those who earn 500,000 and above is least, representing only 2.6% of the population. This is an indication that the quality of lives of the respondents in this section is low. Low patronage of crop farming produce, lack of storage facilities, inadequate credit facilities to expand businesses, absence of electricity, poor access road that hinder intra mobility and inadequate safe drinking water were among the major hindrances to the economic development identified in the study area. The rural access roads are usually inaccessible during the wet seasons thereby hindering movement to market.

This results into large scale post-harvest loss. Most of the communities within this section of the project area are rural. The availability or improvement of electricity supply would hopefully ameliorate the situation.

			Osisioma	Aba South	Aba North	Ugwunagbo	
S/N	Annual In	ncome	Frequency	Frequency	Frequency	Frequency	Average
	(Naira)		(%)	(%)	(%)	(%)	(%)
1	Less	than	8.5	7.8	9.2	18.3	11
2	100,000	_	10.6	14.5	17.6	16.8	14.9
3	200,000	-	10.5	20.2	11.2	34.3	19.1
4	300,000	_	36.2	34	40.5	14.3	31.3
5	400,000	-	21.7	10	9	9.8	12.6
6	500,000 +		12.5	13.5	12.5	6.5	11.3

Table 6.56b: Income Level in Abia State

A majority of the respondents (31.3%) in communities within Anambra state section of the project area earn 300,000 – 399,999 annually while those who earn below 100,000 are least, representing only 1.1% of the population. This is an indication that the quality of lives of the respondents in this section is avearage.

Table 6.56c: Income Level in Imo State

		Owerri West	Owerri North North	Oru West	Oru East	Njaba	Owerri Munici pality	Mbatoli	Ngor Okalla	
S/N	Annual Income (Naira)	Freque	Frequen	Freque	Frequen	Freque	Freque	Frequenc	Frequency	Average
		ncy (%)	су (%)	ncy (%)	су (%)	ncy (%)	ncy (%)	у (%)	(%)	(%)
1	Less than 100,000	8.5	6.8	15.2	13.2	19.8	5.1	16.3	20	13.1
2	100,000 –199,999	20.6	19.1	27.6	24.8	23.4	15.3	28.8	23.2	22.9
3	200,000 – 299,999	13.3	27.2	19.4	23.7	21.4	11.9	19.2	26.2	20.3
4	300,000 –399,999	29.4	24.2	18.5	20	19.1	28.7	22.5	16.5	22.4
5	400,000 –499,999	18.2	13.2	12.8	14.6	10.5	20.8	9.7	9.8	13.7
6	500,000 +	10	9.5	6.5	3.7	5.8	18.2	3.5	4.3	7.6

Source: GNL 2019

6.4.25 Households' Main Source of Energy

The result on the survey of the sources of energy used by household in the project area revealed that electricity from the national grid is the main source of energy in the project area. Other frequently used energy source for lighting are Kerosene and generator. Conversely, torchlight, wick lamps, solar and candles were the least sources of energy used by the households. On the other hand, kerosene was the most used energy source for cooking. Generally, over 45% of the households in the project area use kerosene for cooking their meals. In addition, charcoal and electricity were the least patronized energy sources in the project area. A total of ten (10) energy sources for both lighting and cooking were identified in the project area. The result is summarized in Tables 6.57 (a-c).

	Osi	sioma	Aba	North	Aba S	South	Ugw	unagb	Total Average		
							0		(%)		
Source	C L		С	L	С	L	С	L	С	L	
Main electricity	1	70	1	45	3 30		2	50	10.6	29.4	
Solar	0	3	1 5		0	3	0	0	1.5	1.7	
Gas	30	0	40 0		11	0	30	0	0	16.7	
Paraffin/kerosene	45	5	40	11	40	35	40	7	87.9	24.6	
Charcoal	2	0	1	0	9	0	5	0	0	2.5	
Wick lamp	0	6	0 7		0	0 12		1	0	3.9	
Candles	0	2	0 3		0 2		0 1		0	1.2	
Firewood (biomass)	16	0	15	0	30	0	12	0	0	11.0	
Generators	0	8	0	18	0	11	0	15	0	7.8	
Torch light	0	1	0	1	0	2	0	1	0	0.8	

C=Cooking, L=Lighting

The major household source of energy for lighting in communities within Abia state is main electricity from the Nation grid (29.4%), followed by Paraffin (24.6%). Establishment of the proposed project will further increase usage and dependency on main electricity which in turn will reduce GHG and noise impacts from generators and fossil fuel (kerosene). Paraffin is the most used energy source for cooking, followed by main electricity.

	Ekwar	iao	Idimili S	Oah	ara	Ihiala		Total	Average		
	LKWUS	ngo			Oybara				(%)		
Source	С	L	С	L	С	L	С	L	С	L	
Main electricity	2	80	0	35	2	70	5	65	2.3	60.5	
Solar	0	1	0	1	0	2	0	0	0	0.96	
Gas	38	0	10	0	34	0	65	0	35.	0	
	00					Ŭ			5		
Paraffin/kerosene	40	7	45	32	41	9	30	0	37.	11.6	
	10	'		02					7		
Charcoal	2	0	9	0	5	0	0	0	3.8	0	
Wick lamp	0	6	0	12	0	2	0	20	0	9.6	
Candles	0	2	0	2	0	1	0	0	0	1.2	
Firewood (biomass)	20	0	46	0	20	0	0	0	20.	0	
	20	Ŭ		Ŭ	20	Ŭ			8		
Generators	0	8	0	15	0	17	0	20	0	14.5	
Touch light	0	2	0	2	0	2	0	0	0	6	

Table 6.57b: Respondents Households' Main Source of Energy (%) in Anambra State

C=Cooking, L=Lighting

The major household source of energy for lighting in communities within Anambra state is main electricity from the Nation grid (60.5%), followed by Paraffin (11.6%). Establishment of the proposed project will further increase usage and dependency on main electricity in the area. This will in turn reduce GHG and noise impacts from generators and fossil fuel (kerosene). Paraffin is the most used energy source for cooking (37.7%), followed by gas (35.5%).

	Owerri		Owerri		Oru		Oru		Njaba		Owerri		Mbatoli		Ngor		Total A	Average
	West		North		West		East				Municipal				Okalla		(%)	
											ity							
Source	С	L	С	L	С	L	С	L	С	L	С	L	С	L	С	L	С	L
Main Electricity	1	78	2	55	0	30	2	64	5	65	5	60	6	55	4	55	3.2	0.55
Solar	0	1	2	5	0	1	0	2	0	0	0	0	0	2	0	1	0.3	0.15
Gas	34	0	30	0	10	0	34	0	70	0	65	0	50	0	45	0	43.5	0
Paraffin/kerose	45	6	42	12	40	32	40	9	25	0	30	0	45	5	40	4	39.5	8.7
ne																		
Charcoal	2	0	1	0	9	0	5	0	0	0	0	0	1	0	0	0	23.4	0
Wick lamp	0	6	0	7	0	12	0	2	0	5	0	20	0	8	0	9	0	8.9
Candles	0	2	0	3	0	2	0	1	0	0	0	0	0	7	0	8	0	0.3
Firewood	18	0	13	0	35	0	18	0	0	0	0	0	2	0	0	0	11.1	0
(biomass)																		
Generators	0	8	0	20	0	13	0	17	0	25	0	20	0	17	0	18	0	17.7
Touch light	0	2	0	1	0	2	0	2	0	0	0	0	0	0	1	0	0.2	0.99

Table 6.57c: Respondents Households' Main Source of Energy (%) in Imo State

Source: GNL Survey, 2019

The major household source of energy for lighting in communities within Anambra state is main electricity from the Nation grid (60.5%), followed by Paraffin (11.6%). Establishment of the proposed project will further increase usage and dependency on main electricity in the area. This will in turn reduce GHG and noise impacts from generators and fossil fuel (kerosene). Gas (43.5%) is the most used energy source for cooking, followed by main Parafin (39.5%).

6.4.26 Households' Main Source of Potable Water

A total of nine (9) potable water sources were reported to be used by households in the project area. Result on the percentage usage of each of the water sources is presented in Figure 6.15.

Figure 6.15: Households' Main Source of Potable Water (%)

As could be seen in Figure 6.15, the prominent water source in the project area is borehole, followed by spring and Rivers.

6.4.27 Waste Disposal by Households

Refuse

Figure 6.16 shows refuse disposal methods by households. Open dumping and burning are the two waste methods practiced by the people in the project area Figure 6.16.

Figure 6.16: Refuse Disposal

Open dumping (exclusive) is the most practiced waste disposal method across the project area, followed by burning while open dumping and burning (in combination) is the least practiced method.

6.4.27.1 Waste Disposal (Sewage)

Sewage disposal by households were either by pit latrine, bush or by water closet as shown in Figure 6.17.

Figure 6.17: Sewage Disposal Methods by Households

According to Figure 6.17, over 55% of households in the project area use the Water Closet (WC) system. About 30% used pit latrine while about 15% of the households, use the bush.

6.4.28 Community Buildings within the Wayleave

This parameter would be studied and reported in the RAP.

6.4.29 Vulnerable Groups

The category and number of vulnerable groups in project area were identified and analyzed as shown in Table 6.58 (a, b, c). This was compiled with assistance with the village heads. A total of 1524 vulnerable persons are present in the project area. A breakdown of the result showed that children (438 individuals), women (410 individuals) and land tenants (318 individuals) were the prominent vulnerable groups in the project area.

Vulnerable groups LGAs	Children	Land tenants	Women	Non indigenes	Elderly	Infirm/physically challenged	Herdsmen	Total
Osisioma	38	20	30	10	23	19	9	149
Aba North	40	26	31	23	14	10	3	147
Aba South	22	17	34	10	20	18	8	129
Ugwunagbo	21	21	23	13	15	16	8	117
Total	121	84	118	56	72	63	28	542

Table 6.58a Proportion of vulnerable groups in communities within Abia State

As could be seen in Table 6.58a, a total of 542 individuals were censored in communities within Abia state. A great number of the vulnerable persons comprised mainly of children (121 individuals), women (118 individuals) and land tenants (864 individuals).

Vulnerable	Children	Land	Women	Non	Elderly	Infirm/physically	Herdsmen	Total
groups		tenants		indigenes		challenged		
LGAs								
Ekwusigo	28	20	30	10	23	19	9	139
Idimili								
South	22	17	24	12	29	18	8	130
Ogbara	20	20	17	17	18	11	6	109
Ihilia	28	18	16	11	16	12	4	105
Total	98	75	87	50	86	60	27	483

Table 6.58b: Proportion of vulnerable groups in communities within Anambra State

Geomatics Nigeria

As could be seen in Table 6.58b, a total of 483 individuals were censored in communities within Anambra state. A great number of the vulnerable persons comprised mainly of children (98 individuals), women (87 individuals) and the elderly (86 individuals).

Vulnerable	Children	Land	Women	Non	Elderly	Infirm/physically	Herdsmen	Total
groups		tenants		indigenes		challenged		
LGAs	-							
Owerri West	18	7	12	15	9	11	9	81
Owerri North	12	6	8	3	7	10	3	49
Oru West	12	7	14	6	5	8	8	60
Oru East	14	6	13	4	5	6	8	56
Njaba	13	4	10	5	7	4	5	48
Owerri								
Municipality	20	5	15	6	14	9	2	71
Mbatoli	22	4	7	7	8	11	6	65
NgorOkalla	28	8	10	5	6	8	4	69
Total	139	47	89	51	61	67	45	499

Table 6.58c: Proportion of vulnerable groups in communities within Imo State

As could be seen in Table 6.58c, a total of 499 individuals were censored in communities within Imo state. A great number of the vulnerable persons comprised mainly of children (139 individuals), women (89 individuals) and the Infirm/physically challenged (67 individuals).

6.4.30 Cultural Heritage Resources

There are no cultural sites within the way leave and within the 500m on either side of the RoW.

6.4.31 Gender Issues

Data relating to gender issues were obtained using community questionaires, involving all the communities in the Row. Male and female folks were separated and assisted in responding to the gender indicators parameter. Result is represented in Table 6.59 (a, b, and c).

Local	Ekwusigo	Ekwusigo la		outh	Oqbara		Ihiala	
Governments	5 3							
	Male	Female	Male	Female	Male	Female	Male	Female
Circumsion	100	0	100	0	100	0	100	0
Land ownership	85	15	91	10	90	10	85	15
Access to credit	60	40	67	33	64	36	65	35
Decision making at	80	20	75	25	90	10	95	5
household								

Table 6.59a: Gender Parameters in communities within Anambra State

The result on gender issues in the communities within Anambra state revealed that all male individuals in the households are circumcised with no female circumcised. Also, over 80% of respondents owning lands are males and less than 16% are females. This is possibly because the culture of the lbos does not allow females to own family land or take part in its sharing. There are no limitations to access to credit in this section of the project area due to gender differences (Table 6.59b). Results also revealed that decision making in household were mostly done by males. Over 75% male respondents are involved in decision making while only less than 20% of females are involved in household decision making.

Local Governments	Osisioma		Aba North		Aba So	outh	Ugwunag	gbo
	Male	Female	Male	Female	Male	Female	Male	Female
Circumsion	100	0	100	0	100	0	100	0
Land ownership	88	12	91	9	95	5	85	15
Access to credit	61	39	70	30	70	30	69	31
Decision making at household	85	15	80	20	90	10	96	4

Table 6.59b: Gender Parametres in communities within Abia State

The trend and possible reasons for the result on genders issues in communities within Abia state of the project area is same as those already discussed for the Anambra section.

Table 6.59c: Gender Parametres in communities within Imo State

Local	Owe	rri	Ower	ri	Oru W	est	Oru E	ast	Njab	а	Owe	rri	Mbat	toli	Ngor	
Governments	Wes	t	North								Muni	cipality			Okalla	l
	Mal	Fem	Mal	Fem	Male	Fema	Mal	Fem	Mal	Fem	Mal	Fema	Mal	Fem	Male	Fem
	е	ale	е	ale		le	е	ale	е	ale	е	le	е	ale		ale
Circumsion	10	0	100	0	100	0	100	0	10	0	10	0	10	0	100	0
	0								0		0		0			
Land ownership	88	12	85	15	90	10	85	15	85	15	85	15	91	10	85	15
Access to credit	60	40	65	35	64	36	69	31	65	35	80	20	67	33	69	31
Decision making	80	20	95	5	90	10	95	5	95	5	75	25	75	25	95	5
at household																

Source: GNL Survey, 2019

The trend and possible reasons for the result on genders issues in communities within Imo state of the project area is same as those already discussed for the Anambra section.

CHAPTER SEVEN STAKEHOLDER ENGAGEMENT

7.1 Consultation of Stakeholders

7.1.1 Invitation to Scoping Workshop and Notification of Project

A letter was prepared introducing the Project proponents, the Project and inviting attendance and participation at the Scoping Workshop. These letter notifications were distributed to key stakeholders' groups identified (as listed in Table 7.1).

Table 7.1: Identified Stakeholders

Stakeholder Group	Stakeholder Name	Stakeholder L	evel	Engage	Mode of
and Interest in the				ment	Invitation
Project				Activity	
		National	State Local	Meeting	Letter
Government	Federal Ministry of	Х		Х	х
Authorities:	Environment				
National, regional and	(FMEnv)				
local government of	Federal Ministry of Agriculture,	Х		х	Х
primary political	Forestry and Natural				
importance to the	Resources				
Project with permitting	Federal Ministry of Lands and	Х		Х	Х
Requirements that must	Survey				
be met by the Project.	Federal Ministry of Power,	Х		Х	Х
	Housing and Urban				
	Development				
	Nigerian Electricity Regulatory	Х		Х	Х
	Commission				
	National Environmental	Х		х	Х
	Standards and Regulations				
	Enforcement Agency				

(
(
(
(
(
(
(
(
(
(

7.1.2 Stakeholder Information and Consultation Rounds

Four rounds of stakeholder consultation were planned. They were planned according to key stages, or decision moments, throughout the study where the informed participation of stakeholders were likely to make the most significant contribution to the on-going analysis. These included the scoping stage (1st round), the route assessment and the documentation of the displaced households' stage (2nd round is ongoing). The third round of consultations is scheduled for the disclosure of the, ESIA, ESMP and RAP preliminary results (3rd round).

Table 7.2 present outlines the studies' stakeholder engagement process and presents, for each consultation round, the specific engagement objectives, target groups and implementation periods.

Table 7.2: Stakeholder engagement process for each consultation round, specific engagement objectives, target groups and implementation periods

	Objectives and Information Provided for Rounds 1 and 2									
Abia State F	Round 1			Imo State		An	ambra State Roun	d 1		
Target	Date &	Comment &	Target	Date &	Comment & Implementation	Target	Date & Venue	Comment &		
group	Venue	Implementation	group	Venue		group		Implementation		
FMEnv	Government	Promised to cooperate with	FMEnv	Benconn	Advised we ensure	FMEnv	Beautiful Gate	Advised TCN to		
	house,	other environment		Hotel,	maintenance of the		Resort, Awka	develop the		
	Umuahia	regulators to fast track the		Owerri	ecosystem, ecological		(24 July 2019)	SEP and strictly		
	27/7/2019	ESIA Process for timely		25/7/2019	process and preserve			implement it		
		approvals and permitting.			biodiversity.			throughout the		
								project lifespan,		
								to ensure		
								stakeholder		
								confidence and		
								sustainability.		
FMAFNR	Government	Promised to be involved in	FMAFN	Benconn	Advised we watch out for	FMAFNR	Beautiful Gate	Compensation		
	house,	the provision of agricultural	R	Hotel,	flood plains and also		Resort, Awka	for PAPs and		
	Umuahia	extension services to		Owerri	construction be done above		(24 July 2019)	PACs was		
	27/7/2019	PAPs, to achieve greater		25/7/2019	flood level.			stressed while		
		agricultural productivity.						footprint for		
								access route		

								creation should
								be minimized
EMIS	Covernment	They advised that proper	EMIS	Bonconn	promised to facilitate and fast	EMIS	Rogutiful Cato	Promisod to
FIVILO	Government	They advised that proper	FIVILO	Delicolili		FIVILO	Deautiful Gate	FIOINISEU LO
	house,	route studies should be		Hotel,	track the processes to gazette		Resort, Awka	send officers to
	Umuahia	carried out and also		Owerri	the ROW when TCN applies		(24 July 2019)	join the TCN's
	27/7/2019	affected landowners should		25/7/2019	and this should be done			consultant in the
		be compensated			before compensations /			field for
					Resettlements are			enumeration
					implemented			exercise, if
								invited
FMPW&H	Government	The acquisition of	FMPWH	Benconn	PAPs and PACs should be	FMPWH	Beautiful Gate	The design and
	house,	government owned land but		Hotel,	compensated without delay.		Resort, Awka	type of
	Umuahia	the project will be		Owerri			(24 July 2019)	equipment
	27/7/2019	responsible for the		25/7/2019				should be that
		processing charges.						which meet
								international
								best practice.
NESREA	Government	Commended TCN for an	NESRE	Benconn	Advised compliance with	NESREA	Beautiful Gate	Promised to
	house,	early good start in	А	Hotel,	environmental laws and		Resort, Awka	give full support
	Umuahia	compliance to		Owerri	regulation		(24 July 2019)	in the best of
	27/7/2019	environmental		25/7/2019				their ability

		requirements and						
		admonished the Company						
		to keep up that way						
NERC	Government	Promised to give full	NERC	Benconn	Advised villagers to be	NERC	Beautiful Gate	Emphasized on
	house,	support in the actualization		Hotel,	hospitable and give full		Resort, Awka	the observation
	Umuahia	of the project.		Owerri	cooperation in the		(24 July 2019)	of Nigerian
	27/7/2019			25/7/2019	actualization of the project			Electricity
								Regulatory
								Commission
								standards
NEMSA	Government	Requests to be involved in	NEMSA	Benconn	TCN should ensure that	NEMSA	Beautiful Gate	Promised to
	house,	all phases of the project to		Hotel,	materials and equipment to		Resort, Awka	give technical
	Umuahia	inspect the standards of the		Owerri	be used are of international		(24 July 2019)	support in the
	27/7/2019	project before		25/7/2019	standards.			actualization of
		commissioning and during						the project
		operations.						
DSS	Government	promised to provide the	DSS	Benconn	Gadgets, Equipments and	DSS	Beautiful Gate	Promised to
	house,	necessary security cover		Hotel,	valuables should be carefully		Resort, Awka	give full support
	Umuahia	needed in all phases of the		Owerri	safeguarded to avoid theft		(24 July 2019)	in the
	27/7/2019	project		25/7/2019	and vandalism			actualization of
								the project.

NSCDC	Government	Security guard should be	NSCDC	Benconn	Promised to provide the	NSCDC	Beautiful Gate	presence of
	house,	employed.		Hotel,	necessary security cover		Resort, Awka	security
	Umuahia			Owerri	needed in all phases of the		(24 July 2019)	personnel
	27/7/2019			25/7/2019	project and requested that			during any
					provisions for their logistics			phase of the
					be made ab initio in the			project activity
					project budget.			
ASMEnv	Government	They advised we ensure	ISMEnv	Benconn	Waste should be disposed	ASMEnv	Beautiful Gate	Compliance
	house,	safe health and safety		Hotel,	properly to avoid		Resort, Awka	with the state
	Umuahia	environment		Owerri	environmental pollution		(19 may 2019)	environmental
	27/7/2019			20/3/2019				laws and
								regulation
AMWH	Government	Stressed on the gully	IMWH	Benconn	Stressed the need for	AMWH	Beautiful Gate	Transport
	house,	erosion hazard in the state.		Hotel,	Compensation to PAPs and		Resort, Awka	Management
	Umuahia			Owerri	PACs was stressed		(19 May 2019)	Plan needs to
	12/3/2019			20/3/2019				bedeveloped for
								heavy duty
								vehicle to
								ensure
								appropriate

								controls during
								transportation
ASMLS	Government	affected landowners should	ISMLS	Benconn	promised to provide	ASMLS	Beautiful Gate	All the
/ IOINIEO			IONILO	Denoonin		/ IOMEO		
	house,	be compensated		Hotel,	necessary support		Resort, Awka	communities
	Umuahia			Owerri	needed in all phases of the		(19 May 2019)	sought to know
	12/3/2019			20/3/2019	project			the size of the
								RoW
Ariaria Int	Ariaria	Asked that PAPs be given	Owerri	Owerri	Harped on the need for locals	Onitsha	Onitsha market	The project
ernational	market	adequate time prior to	market	market	to be involved in the	market	square	should fully
<i>Market</i> Tr	Square	construction	women	square	contracting process	trade	23-5-2019	understand the
aders Ass	21-5-2019		associati	22-5-2019		union		livelihood
ociation			on					pattern within
								the area.
Aba	Aba market	TCN should actively	Owerri	Owerri	affected landowners should	Onitsha	Onitsha market	they asked for
market	square	engaged all stakeholders	market	market	be compensated	market	square	improvement of
trader's	21-5-2019	throughout the project life	traders's	square		women	23-5-2019	electricity
associatio		cycle	associati	22-5-2019		associati		supply in their
n			on			on		village

Abia Sta	te Governmer	nt Promise	ed to give full	Anambr	Benconn	Requested	d for consta	nt Anambr	a Beaut	iful Gate	affected
Women	house,	support	in the actualization	a State	Hotel,	electricity	in their community	/ market	Reso	t, Awka	landowners
Associati	o Umuahia	of the p	roject	Women	Owerri			women	23-5-2	2019	should be
n	21-5-2019			Associat	22-5-2019			associat	ti		compensated
				ion				on			
		I	Round	2 Consulta	tions. The ta	rget group	o is Project Affec	ted Commu	nities	I	
Imo State	e			Abia stat	te			Anambra S	State		
LGA	Community	Date &	Comment &	LGA	Commun	Date &	Comment &	LGA	Commu	Date &	Comment &
		Venue	Implementation		ity	Venue	Implementati		nity	Venue	Implementati
							on				on
Owerri	Owerri	lgwe's	They were	Ossioma	Umuode	Town	The people of	Idemili	Obosi	Communi	Compensation
Munici		Palace	concerned about	Ngwa		hall	Umuode wants	South		ty primary	for PAPs and
pal		21-5-	the houses			22-5-	TCN improve			school	PACs must be
		2019	around the right of			2019	electricity in			24-7-	paid before
			way and relocation				their			2019	project
			measures put in				community				commenceme
			place by the								nt
			government.								
	Nwaorie	Town hall	The community	1	Umuocha		They		Umuoja	Town hall	TCN must
		21-5-	requested for		m		welcomed the			22-7-	acquire the
		2019	community				project and			2019	ROW now

			development			asked for			before
			projects and			improvement			embarking on
			employment			of electricity			the proposed
			opportunities for			supply in their			reconstruction
			the youth			village			project
	Owerri	lgwe's	TCN must pay	Abayi		They showed	Obosi	Town hall	The
	Division	Palace	adequate			concern on		22-7-	community
		21-5-	compensation for			corona and		2019	requested for
		2019	the affected			effect on			community
			houses/structures			human health			development
			and crops within						projects and
			the ROW.						employment
									opportunities
									for the youth
Mbatoli	Awo	lgwe's	They want TCN to	Umuozuo	lgwe's	They	Oba	lgwe's	The Igwe
		Palace	prioritize rural		Palace	complained	Aboji	Palace	pledged to fully
		21-5-	electrification and		22-5-	about Dust and		24-7-	support the
		2019	stabilize power		2019	noise control		2019	implementatio
			supply in their			during			n of the project
			community			construction			

Geomatics Nigeria

0)rodo	Communi	They were	OsiaUmu	Comm	TCN must pay		Oba	lgwe's	They
		ty primary	concerned about	Mgbede	unity	adequate			Palace	welcomed the
		school	the houses and		primary	compensation			20-7-	project and
		20-5-	farmlands		school	for the affected			2019	asked for
		2019	around the right of		22-5-	houses/structu				improvement
			way and relocation		2019	res and crops				of electricity
			Measures put in			within the				supply in their
			place by the			ROW.				village
			government.							
0	hoba	Town hall	They do not want		Town	They want the	Ogbaru	River	Town hall	The people of
		20-5-	TCN to build their	AmaOkp	hall	compensation/		idemili	24-5-	lasi showed
		2019	houses for them	u	22-5-	resettlement to			2019	major
			but to compensate		2019	be				concerned
			them in cash.			implemented				on
						within months				compensation
						of				to landowners
						enumeration,				affected
						to avoid				by the project
						unnecessary				

					hardship on the PAPs				
Nkwesi	lgwe's	They expressed	UmuOjim	Comm	They	-	ErunaLa	Communi	They
	Palace	their fear remaining	а	unity	requested for		gbe	ty primary	requested
	20-5-	in 'darkness',		primary	employment			school	compensation
	2019	despite co-hosting		school	for the youth			24-5-	should be paid
		a power project of		22-7-	during the			2019	before project
		this scale		2019	cause of the				commenceme
					project				nt to avoid by
									PAPs
Mbieri	Town hall	Compensation for	Ogbu	lgwe's	The Igwe	-	Atani	lgwe's	The Igwe
	21-5-	PAPs and PACs		Palace	promised his			Palace	welcomed the
	2019	must be paid		23-7-	full support			20-7-	development
		before project		2019	during the			2019	and pledged
		commencement			cause of the				full support
					project				
Obaku	lgwe's	They asked if TL	Umuobo	Comm	They were	-	Eze	Communi	They want
	Palace	won't cause		unity	concerned			ty primary	TCN to
	21-5-	electrocution in		primary	about the			school	prioritize rural
	2019	their communi ty		school	houses and			20-7-	electrification
					farmlands			2019	and stabilize

					23-7-	around the				power supply
					2019	right of way				in their
						and relocation				community
						measures put				
						in place by the				
						government.				
Ngor-	Akabo	Communi	TCN must acquire	Umumba	Comm	They want	Ihiala	Awgbu	lgwe's	They want the
Okpala		ty primary	the ROW now		unity	TCN to			Palace	compensation/
		school	before embarking		primary	prioritize rural			24-7-	resettlement to
		21-5-	on the proposed		school	electrification			2019	be
		2019	reconstruction		24-7-	and stabilize				implemented
			project		2019	power supply				within months
						in their				of
						community				enumeration,
										to avoid
										unnecessary
										hardship on
										the PAPs
	Umunoha	Communi	They requested	UmuAkp	Comm	They shoed		Azira	lgwe's	The
		ty primary	compensation	ara	unity	their grievance			Palace	community
		school	should be paid			for No				demanded for

		21-5-	before project		primary	compensation		24-5-	community
		2019	commencement to		school	payment after		2019	development
			avoid by PAPs		20-7-	the			projects
					2019	construction of			
						the existing			
						330kV SC line.			
Owerri	Umunahu	lgwe's	They want TCN to	Umuaba	Town	They were	Uli	Communi	They want the
North		Palace	prioritize rural		hall	scared of		ty primary	compensation/
		26-7-	electrification and		24-7-	corona effect		school	resettlement to
		2019	stabilize power		2019	and		24-5-	be
			supply in their			asked which		2019	implemented
			community			measures was			within months
						put in place to			of
						reduce the			enumeration,
						effect			to avoid
									unnecessary
									hardship on
									the PAPs
	Mkpama	Town hall	TCN must acquire	Okpuala	lgwe's	They asked for	Ihiala	Communi	The Igwe
		26-7-	the ROW now		Palace	the project		ty primary	pledged to fully
		2019	before embarking					school	support the

			on the proposed		23-7-	Benefits and			24-5-	implementat	tio
			reconstruction		2019	also			2019	n of the proj	ject
			project			employment					
						opportunities					
						for the youths					
Oru	Awomama	Town hall	The Igwe pledged	Mbuntu	lgwe's	The villages		Ozubulu	lgwe's	The Ig	jwe
East		25-7-	to fully support the		Palace	made enquiry			Palace	welcomed	the
		2019	implementation of		21-7-	on how long			23-7-	developmen	nt
			the project		2019	the			2019	and pledg	ged
						project will				full support	
						take and its					
						benefits to the					
						community					
Oru	Ofekata	Communi	They showed their	MbokoU	Comm	They	Ekwusig	Orifite	lgwe's	They w	ere
West		ty primary	grievance for No	muete	unity	requested	0		Palace	concerned	
		school	compensation		primary	compensation			24-7-	about	the
		25-7-	payment after the		school	should be paid			2019	houses a	and
		2019	construction of the		23-7-	before project				farmlands	
			existing 330kV SC		2019	commenceme				around	the
			line			nt to avoid by				right of v	Nay
						PAPs				and relocation	on

									measures put
									in place by the
									government.
-	Owelu,	lgwe's	They want TCN to		Town	They	Ihembos	lgwe's	They
		Palace	prioritize rural	lhie	hall	welcomed the	i	Palace	showedtheir
		20-5-	electrification and		21-7-	project and		23-7-	grievance for
		2019	stabilize power		2019	asked for		2019	No
			supply in their			improvement			compensation
			community			of electricity			payment after
						supply in their			the
						village			construction of
									the existing
									330kV SC line.
	Orji,	Town hall		AmaApu	Comm	The Igwe	Ozubulu	Town hall	They want
		20-5-			unity	promised his		23-7-	TCN to
		2019			primary	full support		2019	prioritize rural
					school	during the			electrification
					23-7-	cause of the			and stabilize
					2019	project			power supply
									in their
									community

	Oratta	Town hall		lfe	Town	They showed	Oraifite	Town hall	They
		20-5-			hall	concern on		23-7-	showedtheir
		2019			23-7-	corona and		2019	grievance for
					2019	effect on			No
						human health			compensation
									payment after
									the
									construction of
									the existing
									330kV SC line.
Owerri	Orogwe	lgwe's	They showedtheir	UmuMba	lgwe's	They	Ubuluisi	Town hall	TCN must
west		Palace	grievance for No		Palace	welcomed the	uzo	20-7-	acquire the
		20-5-	compensation		21-7-	project and		2019	ROW now
		2019	payment after the		2019	asked for			before
			construction of the			improvement			embarking on
			existing 330kV SC			of electricity			the proposed
			line.			supply in their			reconstruction
						village			project
	Ubomiri	lgwe's	They do not want	Ariaria	Town	They want			
		Palace	TCN to build their		hall	TCN to			
			houses for them			prioritize rural			

		20-5-	but to compensate			24-7-	electrification		
		2019	them in cash.			2019	and stabilize		
							power supply		
							in their		
							community		
	Irete	Communi	The community	Aba	Asia	Town	The Igwe		
		ty primary	expressed concern	South	UmuNka	hall	pledged to fully		
		school	over their farmland			23-7-	support the		
		24-7-	were the project			2019	implementatio		
		2019	cuts across and				n of the project		
			requested for						
			compensation						
	Awoldemiri	lgwe's	The Igwe pledged		Asia	lgwe's	They		
		Palace	to fully support the		Amanhie	Palace	requested for		
		24-7-	implementation of			20-7-	employment		
		2019	the project			2019	for the youth		
							during the		
							cause of the		
							project		
Ngor-	Amaibo	lgwe's	The Igwe	Ugwunag	Ala Oji	Town	They showed		
Okpala		Palace	welcomed the	bobo		hall	concern on		
						I			

Geomatics Nigeria

	26-7-	development and		24-7-	corona and		
	2019	pledged full		2019	effect on		
		support			human health		
Alulu	lgwe's	TCN must pay	UmulkuU	Comm	The Igwe		
	Palace	adequate	ko	unity	pledged to fully		
	26-7-	compensation for		primary	support the		
	2019	the affected		school	implementatio		
		houses/structures		27-4-	n of the project		
		and crops within		2019			
		the ROW.					
Ochicha	Communi	The Igwe					
	ty primary	welcomed the					
	school	project and pledge					
	26-7-	full support					
	2019						
Elelem	lgwe's	They were					
	Palace	concerned about					
	26-7-	the houses and					
	2019	farmlands					

	around the right of				
	way and relocation				
	measures put in				
	place by the				
	government.				

A) Consultation session with stakeholders of Umuode community, Osisioma Ngwa, Abia State, held at the town hall on 22-5-2019

B) Consultation session with stakeholders of Obosi Community Idemmili South, Anambra State, held at community secondary school on 24-7-2019

C) Consultation sessions with stakeholders of Nwaorie community Owerri, Imo State, held at the town hall on 21-5-2019

D) Consultation sessions with stakeholders of Umunahu community, Owerri North, Imo State, held at the Igwe's palace on 26-7-2019

E) Consultation sessions with stakeholders of Orji community, Oru west, Imo State, held at the town hall on 20-5-2019

F) Consultation sessions with stakeholders of Ugwunagbobo community, Alaoji, Abia State, held at the town hall on 24-7-2019

G) Stakeholders at the town hall on 24-7-2019 during the consultation Session at Ugwunagbobo community, Imo State

H) Concerned stakeholders at the town hall on 20-5-2019 during the consultation session at Orji community, Imo State

I) Consultation session with FMEnv Anambra and stakeholders at Beautiful Gate Resort, Awka on 24-7-2019

K) Consultation session with concerned stakeholders atUmuakpara Community, osisioma ngwa, Abia State at Community Primary School on 20-7-2019

J) FMEnv officials on 24-7-2019 at Beautiful Gate Resort, Awka during the consultation session

L) Consultation session with stakeholders at Awgbu community Ihiala, Anambra State at the Igwe's palace on 24-7-2019

M) Speaking with the stakeholders at UmuakparaCommunity, Osisioma Ngwa, Abia state at Community Primary School on 20-7-2019

Plates 7.1 (A – N): Pictires Taken During Some Stakeholders' Engagement

Above are Plates 7.1 (A-N) showing excerpts from the different consultation sessions.

N) Concerned stakeholders sharing their opinions on the projecton 24-7-2019 at Beautiful Gate Resort, Awka

A) Attendance register for consultation session at the

Beautiful gate resort on 24-7-2019

D) Attendance register for consultation session at Obosi Used motor spare part market, Onitsha

B) Attendance register for consultation session at

Government houseUmuahia on 26-7-2019

E) Attendance at Amaifolu community

Plate 7.2 (A-F): Attendance Register

C) Attendaance register taken at Bencomm

hotels, Owerri on 25-7-2019

F) Attendance register for consultation session at Obosi Used motor spare part market, Onitsha

7.1.3 Grievance Management Mechanism

The IFC Guidance Note 1 (IFC, January 2012) provides guidelines for a Grievance Mechanism to receive and facilitate resolution of concerns and grievances from stakeholders. Some of the key characteristics of a Grievance Mechanism are set out below:

- Scaled to the risks and adverse impacts of the project;
- Resolves grievances promptly;
- Uses understandable and transparent engagement processes, that is culturally appropriate and readily accessible;
- No cost to, and without retribution to the complainant;
- Do not impede access to judicial or administrative remedies;
- In place from the beginning of project development and available throughout the life of the project.

Notification: Stakeholders will be notified of the grievance procedure as part of the ongoing stakeholder engagement process.

Responsibilities: It is recommended that the Liaison Officers (LO) be responsible for maintaining the Grievance Register.

Recommended procedure: Grievances are currently received in writing or verbally by the Liaison Officer (LO) directly from the complainant or TCN employees, consultants and/ or contractors.

It is recommended that an LO ensures that:

- The grievance is entered into the Grievance Register and assigned an individual number;
- The complainant is informed of the receipt of the grievance, as soon as possible, by an appropriate means (written or verbal)
- Appropriate action is taken, or the grievance is referred to the appropriate member of the TCN-PIU within 24 hours;
- The complaint is tracked and addressed;
- Feedback is given to the complainant about how the complaint has been addressed;
- Feedback is given to the complainant by appropriate means (written or verbal) within two weeks of being received. If not resolved during this time, further feedback is given once the complaint is addressed (within 30 days).

• Unresolved grievances and disputes are referred to a credible and independent person or body for arbitration.

Figure 6.16 is an overview of a basic grievance management procedure that could act as a framework for future reference of complaints from stakeholders, affected communities or grievances received during the implementation of the Resettlement Action Plan. TCN-PIU is committed to ensuring that all concerns and issues raised by stakeholders will be addressed in a constructive and consultative manner.

Figure 7.1: An Overview of a Basic Grievance Management Procedure Source: GNL, 2019

7.4.3.1 Conflict Management

TCN-PIU will conduct a conflict risk analysis from topics brought forward by stakeholders intending to resultin conflict. A process will be put in place to resolve issues of conflict that cannot be resolved within the terms of the grievance procedure. TCN-PIU will also:

- Create internal capacity to deal with conflict, such as staff training;
- Identify third party facilitators, and mediators to assist in mediating conflict;
- Provide the necessary budget for conflict management and adjust as required.

7.1.3.2 Time Schedule for Redressing the Grievance

The committee shall be mandated to decide the grievance within three weeks of the complaint by the aggrieved party. Compensation as decided by the committee and according to labour laws shall be paid in full to the aggrieved party within two weeks from the date of decision of the committee. The decision of the committee shall be binding on both parties.

7.1.3.2 Stakeholder engagements during operations

Stakeholders to the project will become at the operations phase though consultation with them will be still be sustained. A more dynamic process is required in which the SEP is adapted to suit new stakeholder groups and changing stakeholder concerns for dialogue throughout the life of the project. This may include the use of expert panels, third-party audits, employee forum, community participation in impact monitoring, and the regular communication of the company's environmental and social performance. These all form part of stakeholder engagement that strengthen effective management of impacts during operations.

7.1.3.3 Stakeholder engagements during closure

The stakeholders potentially affected by the project closure will likely be different from those at earlier stages of the project. Impacts such as the loss of local employment, a decline in economic activity, the cutting-back of community services previously provided by the company, and the disbandment of local community involvement in monitoring environmental and social impacts, can potentially introduce long-term financial and reputational liabilities for the company (IFC, 2007).

Engaging with stakeholders needs to take place well before project closure. This can lower potential costs, reduce liabilities and strengthen the overall reputation of the company. For example, engagement will help guide the rehabilitation of the natural environment impacted by the project, integrate operational infrastructure into existing public services, develop worker disengagement programs, and establish funds and management structures for the long-term monitoring of assets.

Consultation with the various stakeholders to the project is a continuous process and shall be continuously carried out throughout the various life cycle of the project.

CHAPTER EIGHT

IMPACT ASSESSMENT AND MITIGATION MEASURES

8.1 Introduction

This chapter provides information on the assessment of potential environmental and social impacts from the proposed Project. It also presents the approach adopted for the mitigation of identified impacts. The impacts from both short-term (initial decommissioning, medium term–pre-construction, construction and decommissioning phases) and the long-term (operational phase) were considered. Provision of the assessment methodology used in evaluating impact significance, taking into account impact magnitude and sensitivity of receptors and resources affected is also outlined.

As part of the impact assessment process, the primary Project activities (source of potential impacts) considered as well as the environmental and social aspects and receptors assessed for potential impacts during the construction and operational phase of the development are presented in Table 8.1.

Phases		Activities				
Indicative Initial		Tower unstringing				
project Decommissioning		Tower dismantling				
activities	Phase	Dismantling of tower foundation				
		Waste management				
		Stakeholder's consultations				
	Pre- Construction	Consultation with PAPs, Resettlement and				
	Phase	Compensations				
		Vegetation clearance, removal of structures				
		Transportation of men & materials				
	Construction	Transportation of men & construction materials,				
	Phase	Establishment of a construction yard;				
		Preparation of transmission tower foundation/basis				
		Assembly of machinery and equipment (towers, conductors,				
		Transmission lines);				
		Use of natural resources (water, energy sources);				

Table 8.1: Indicative project activities and environmental/social receptors assessed

		Disposal of waste materials (like eroded material) and					
		wastewater; and					
		Non-routine events (e.g. spills, traffic accidents, occupational					
		health & safety incidents).					
		Stakeholder's consultations					
	Operation Phase	Operation of the transmission line;					
		Routine maintenance of towers, conductions and lines; and					
		Non-routine events (e.g. tower collapse, line snapping, and					
		fire).					
		Stakeholder's consultations					
	Decommissioning	Tower unstringing					
	Phase	Tower dismantling					
		Dismantling of tower foundation					
		Waste management					
Environmental	Construction,	BiophysicalEnvironment					
indicators,	Operations and	Air quality;					
resources or	Decommissioning	Noise, vibration & EMF;					
receptors		Soils and geology;					
considered in		Water resources;					
the impact		Terrestrial and aquatic ecology.					
assessment		Groundwater					
		Human Environment					
		Visual amenities;					
		Community level impacts					
		Community health, safety and security;					
		Resettlement;					
		Labour and working conditions;					
		Infrastructure;					
		Employment and economy; and					
		Cultural Heritage					

For each of the above-mentioned environmental component, the associated potential impacts of Project activities are identified, and significance of the impacts assessed.

A summary table of all potential impacts with their significance is presented in Tables 8.6 to 8.36.

8.2 Impact Assessment Methodology

This section describes the overall approach used for the assessment of impacts. Topic-specific methodologies are described under each section of the impact assessment.

In general, the assessment of impacts will pass through an interactive process involving the following four key elements:

Prediction of potential impacts and their magnitude (i.e., the consequences of the proposals on the natural and social environment);

Evaluation of the importance (or significance) of impacts taking the sensitivity of the environmental resources or human receptors into account;

Development of mitigation measures to avoid, reduce or manage the impacts or enhancement measures to increase positive impacts; and Assessment of residual significant impacts after the application of mitigation and enhancement measures.

Where significant residual impacts remain, further options for mitigation may be considered and impacts reassessed until they are as low as reasonably practicable for the Project.

8.3 Definition of Impact Terminologies

Nature/Type of impacts

There are a number of ways that impacts may be described and quantified. Table 8.2 provides definitions of terms used in this section.

Table 8.2:Definition of Impacts

NATURE OF IMPACT: An impact is essentially any change to a resource or receptor brought about by the presence of a project component or by the execution of a project related activity.

	Negative – an impact that is considered to represent an adverse change from the baseline
	or to introduce a new undesirable factor.
	Positive - an impact that is considered to represent an improvement to the baseline or to
	introduce a new desirable factor.
	TYPE OF IMPACT:
	Direct (or primary) - impacts that result from the direct interaction between a planned
	project activity and the receiving environment (e.g., between digging tower foundation and
2	injury to the worker).
2	Secondary - impacts that result from the primary interaction between the Project and its
	environment because of subsequent interactions within the environment.
	Indirect – impacts that result from other activities that are encouraged to happen because
	of the Project.
	TEMPORAL SCALE OF IMPACT:
	Temporary - impacts are predicted to be of short duration, reversible and
	intermittent/occasional in nature. The receptor will return to a previous state when the
	impact ceases or after a period of recovery.
	Short-term - impacts that are predicted to last only for a limited period (i.e., during
3	construction) but will cease on completion of the activity, or because of mitigation measures
	and natural recovery (e.g., non-local construction workforce-local community interactions).
	Long-term - Impacts that will continue for the life of the project but cease when the project
	stops operating (i.e. 50years or when there is improvement in technology which requires
	replacement). These will include impacts that may be intermittent or repeated rather than
	continuous if they occur over an extended time period.
	SPATIAL SCALE OF IMPACT:
	On-site – impacts that are limited to the Project site.
	Local - impacts that affect locally important environmental resources or are restricted to a
4	single (local) administrative area or a single community. For this ESIA, local impacts are
	restricted to the Project site and adjacent areas.
	Regional - impacts that affect regionally important environmental resources or are
	experienced at a regional scale as determined by administrative boundaries.

National - impacts that affect nationally important environmental resources; affect an area that is nationally important/protected; or have macro-economic consequences (i.e. Nigeria).

International - impacts that affect internationally important resources such as areas protected by International Conventions.

Trans-boundary - impacts that are experienced in one country as a result of activities in another.

Magnitude of Impact

The term 'magnitude' covers all the dimensions of the predicted impact to the natural and social environment, including:

- the nature of the change (what resource or receptor is affected and how);
- the spatial extent of the area impacted, or proportion of the population or community affected;
- its temporal extent (i.e. duration, frequency, reversibility); and
- where relevant (accidental or unplanned events),
- the probability of the impact occurring.

For biophysical impacts, the definitions for the spatial and temporal dimension of the magnitude of impacts used in this assessment were provided in Table 7.1.

For social impacts, the magnitude considers the perspective of those affected by taking into account the likely perceived importance of the impact, the ability of people to manage and adapt to change and the extent to which a human receptor gains or losses access to, or control over socio-economic resources (1) resulting in a positive or negative effect on their well-being (a concept combining an individual's health, prosperity, their quality of life, and their satisfaction).

Sensitivity of resources and receptors

Sensitivities are defined as aspects of the natural or social environment which support and sustain people and nature. Once affected, their disruption could lead to a disturbance of the stability or the integrity of that environment.

For ecological impacts, sensitivity can be assigned as low, medium or high based on the conservation importance of habitats and species. For habitats, these are based on naturalness, extent, rarity, fragility, diversity and importance as a community resource.

For socio-economic impacts, the degree of sensitivity of a receptor is defined as 'a stakeholder's (or groups of stakeholders') resilience or capacity to cope with sudden changes or economic shocks. The sensitivity of a resource is based on its quality and value/importance, for example, by its local, regional, national or international designation, its importance to the local or wider community, or its economic value.

Likelihood

Terms used to define likelihood of occurrence of an impact are explained in Table 8.3.

Definition of likelihood					
High probability	Refers to a very likely impact	Refers to very frequent impacts			
Medium probability	Refers to a likely impact	Refers to occasional impacts			
Low probability	Refers to a very unlikely impact	Refers to rare impacts			

Table 8.3: Explanation of terms used for likelihood of occurrence

Impact Evaluation

The third stage in the assessment procedure involved the evaluation of the impacts identified in order to determine their significance. This was based on the methodological framework set by (ISO) 14001 – EMS and EMSP Aspects and Impacts – Determining Significance developed by the University of Bristol in 2015. The evaluation of impact significance was based on the following clearly defined criteria:

- Environmental Legislation and Policy
- Stakeholders' Concern and Interest
- Severity of Environmental and Social Impacts
- Magnitude/Scale of Impacts
- Frequency of Occurrence of Impacts

The above criteria and the rating adopted for the evaluation are described in Table 7.4.

Table 8.4: Impact Evaluation Criteria and Ratings

	Consequence				
A	Environmental	Is there any legislation affecting the aspect?	Score		
	legislation and				
	corporate Policy				
		The impact is covered by legislation & Policy	3		
		The impact is covered by legislation			
		The impact is covered by Policy	1		
		The impact is not covered by legislation or Policy	0		
В	Stakeholder concern /	What stakeholder concern or interest does the	Score		
	interest	stakeholder raise?			
		The impact raises considerable global, national and local	3		
		interest or would have serious detrimental effect on the			
		reputation of the client			
		The impact raises some interest and may have some	1		
		detrimental effect on the reputation of the client			
		The impact raises no interest and would have no	0		
		effect on the reputation of the client			
		The impact raises some interest and may have some positi			
		effect on the reputation of the client			
		The impact raises global, national and local interest or would	-3		
		have a significant positive effect on the reputation of the client			
С	Severity of	What is the severity of environmental impacts?	Score		
	Environmental Impact				
		The impact has a moderate detrimental effect on the	3		
		environment or a scarce, non-renewable resource. Long			
		Term/ Irreversible Impact.			

		The impact has a moderate detrimental effect on the	2
		environment or a scarce, non-renewable resource. Impact	
		not reversible within a year.	
		The impact has a minor detrimental effect on the environment	1
		and on scarce, non-renewable resource. Impact reversible	
		within a month to a year.	
		The impact has no known effect on the environment	0
		The impact has a minor positive effect on the environment	-1
		and on scarce, non-renewable resource.	
		The impact has a moderate positive effect on the	-2
		environment and on scarce, non-renewable resource.	
		The impact has a major positive effect on the environment or	-3
		a scarce, non- renewable resource	
D	Scale of Impacts	What is the scale of the impact?	Score
-	I de la constante de		
	, i i i i i i i i i i i i i i i i i i i	The negative impact occurs in high or large quantities	3
		The negative impact occurs in high or large quantities The negative impact occurs in medium quantities	3
		The negative impact occurs in high or large quantities The negative impact occurs in medium quantities The negative impact occurs in low or small quantities	3 2 1
		The negative impact occurs in high or large quantities The negative impact occurs in medium quantities The negative impact occurs in low or small quantities The positive impact occurs in low or small quantities	3 2 1 -1
		The negative impact occurs in high or large quantitiesThe negative impact occurs in medium quantitiesThe negative impact occurs in low or small quantitiesThe positive impact occurs in low or small quantitiesThe positive impact occurs in low or small quantitiesThe positive impact occurs in medium quantities	3 2 1 -1 -2
		The negative impact occurs in high or large quantitiesThe negative impact occurs in medium quantitiesThe negative impact occurs in low or small quantitiesThe positive impact occurs in low or small quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in high or large quantities	3 2 1 -1 -2 -3
	LIKELIHOOD	The negative impact occurs in high or large quantities The negative impact occurs in medium quantities The negative impact occurs in low or small quantities The positive impact occurs in low or small quantities The positive impact occurs in medium quantities The positive impact occurs in high or large quantities	3 2 1 -1 -2 -3
Z	LIKELIHOOD	The negative impact occurs in high or large quantitiesThe negative impact occurs in medium quantitiesThe negative impact occurs in low or small quantitiesThe positive impact occurs in low or small quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in high or large quantitiesThe positive impact occurs in high or large quantitiesHow frequently does the impact occur?	3 2 1 -1 -2 -3 Score
Z	LIKELIHOOD	The negative impact occurs in high or large quantitiesThe negative impact occurs in medium quantitiesThe negative impact occurs in low or small quantitiesThe positive impact occurs in low or small quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in high or large quantitiesHow frequently does the impact occur?The impact occurs on a daily basis	3 2 1 -1 -2 -3 Score 5
Z	LIKELIHOOD	The negative impact occurs in high or large quantitiesThe negative impact occurs in medium quantitiesThe negative impact occurs in low or small quantitiesThe positive impact occurs in low or small quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in high or large quantitiesHow frequently does the impact occur?The impact occurs on a daily basisThe impact occurs on a weekly basis	3 2 1 -1 -2 -3 Score 5 4
Z	LIKELIHOOD	The negative impact occurs in high or large quantitiesThe negative impact occurs in medium quantitiesThe negative impact occurs in low or small quantitiesThe positive impact occurs in low or small quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in high or large quantitiesHow frequently does the impact occur?The impact occurs on a daily basisThe impact occurs on a weekly basisThe impact occurs on a monthly basis	3 2 1 -1 -2 -3 Score 5 4 3
Z	LIKELIHOOD	The negative impact occurs in high or large quantitiesThe negative impact occurs in medium quantitiesThe negative impact occurs in low or small quantitiesThe positive impact occurs in low or small quantitiesThe positive impact occurs in medium quantitiesThe positive impact occurs in high or large quantitiesHow frequently does the impact occur?The impact occurs on a daily basisThe impact occurs on a weekly basisThe impact occurs on a monthly basisThe impact occurs on an annual basis	3 2 1 -1 -2 -3 Score 5 4 3 2

Overall Significance Ranking

Following the evaluation of each impact using the criteria highlighted in Tables7.1 to 7.4 above, the identified environmental impacts are categorized and scored according to Table 7.5a and the equation below. Consequence (A + B + C + D) X Likelihood (Z) = Significance evaluation score

Table 8.5a: Significance Level Categories

Impact Significance	Score
Low Negative Significance	1 – 25
Medium Negative Significance	26 – 50
High Negative Significance	> 50
Positive Significance	< -1

The definition of the impacts, terminologies, sensitivities, Tables, etc. are are too lengthyrather been direct and definite.

8.4 Approach to mitigation measures

The approach used in this ESIA for identifying mitigation measures where there were significant impacts include:

Environmental laws and regulations in Nigeria, with emphasis on permissible limits for waste streams (FMEnv (formerly FEPA), 1991);

The AfDB

Best available Technology for sustainable Development;

Feasibility of application of the proposed mitigation measures in Nigeria;

Views and concerns of stakeholders as expressed during extensive consultations carried out during the study.

Mitigation measures are developed to avoid, reduce, remedy or compensate for any negative impacts identified, and to create or enhance positive impacts such as environmental and social benefits. In this context, the term "mitigation measures" includes operational controls as well as management actions. These measures are often established through industry standards and may include:

 changes to the design of the project during the design process (e.g. changing the development approach);

- engineering controls and other physical measures applied (e.g. substation maintenance facilities);
- operational plans and procedures (e.g. Occupational Health Safety Plans); and the provision of likefor-like replacement, restoration or compensation.

For impacts that are assessed to be of Major significance, a change in design or layout is usually required to avoid or reduce these. For impacts assessed to be of Moderate significance, specific mitigation measures such as engineering controls are usually required to reduce these impacts to As Low as Reasonably Practicable (ALARP) levels. This approach takes into account the technical and financial feasibility of mitigation measures. Impacts assessed to be of **Minor** significance are usually managed through good industry practice, operational plans and procedures. Negligible impacts require no mitigation action, other than those already included in the project design.

In developing mitigation measures, the first focus is on measures that will prevent or minimize impacts through the design and management of the Project rather than on reinstatement and compensation measures.

8.5 Residual Impact Assessment

Geomatics Nigeria

Impact prediction considers any mitigation, control and operational management measures that are part of the project design and project plan. A residual impact is that which remains even after proffered mitigation measures have been implemented. The residual effects that may remain after the application of the impact mitigation measures have also been discussed for further reduction as possible.

The method for residual impact ranking was exactly the one used in the initial impact assessment. Table 8.5b is the criteria for residual impact determination. The calculations and formula was established with the assumption that the application of mitigation measures can reduce impact severity, consequence and perception to a lower risk.

Consequence criterion	Legend	Explanation
Minor		When the application of any mitigation measure
		is capable of reducing all five evaluation criteria
		(legislation, stakeholder concern, severity, scale

Table 8.5b: Residual Impact Assessment Method

	and frequency) to 6-9 after dividing overall rating
	by 4
Negligible/insignificant	When the application of any mitigation measure
	is capable of reducing all five evaluation criteria
	(legislation, stakeholder concern, severity, scale
	and frequency) to ≤5by after dividing overall
	rating by 4

8.6 Potential Impacts during initial decommissioning and preconstruction Phase

8.6.1 Impacts on Air Quality

The assessment of potential impacts on **air quality**, sources, rating criteria and mitigation measures are presented in Table 8.6.

Impact	Sources of	Mitigation Measures	Impact on Ambient Air Quality	
Statement	Impact	Integrated in Project		
		Design		
A1: Reduction	site	Use covered trucks for	Impact criteria Rating	
in ambient air	preparation	the transportation of	Legislature 3	
quality	(clearing of	materials that release	Stakeholder concern 3	
A2:	existing	dust emissions	Severity 2	
Contribution to	access road	Maintain and operate all	Scale 2	
global warming	and RoW)	vehicles and equipment	Frequency 4	
		engines in accordance	Overall rating 40	

Table 8.6 Impacts on Ambient Air Quality during initial decommissioning and preconstruction Phase

	transport	of	with manufacturers	Impact Significance	Medium
	materials	to	recommendations		
	site				
Mitigation measure	ures				
Maintain and o	perate all v	ehicl	es and equipment engines	s in accordance with r	manufacturers
recommendatior	ns;				
Use covered tru	cks for the tra	ansp	ortation of materials that rele	ease dust emissions; an	d
Speed limits on-site of 25km/hr on unhardened roads and surfaces					
Provide and encourage use of PPEs.					
Limit vegetal clearing to RoW footprint(10m)					
Residual Impact					
Minor					

A1: Vehicles transporting men and materials will generate PM, SO₂, CO, NOx, CO₂ emissions. This activity is expected to add to baseline concentrations. This impact is rated **Medium** and the implementation of the mitigation measures in Table 8.6 will reduce the impact to a **minor** level.

A2: A small volume of vegetal biomass shall be generated through clearing of existing access roads linking the Aba – Port Harcourt express way, Umuikaa – Owerri, and Owerri – Onitsha express Wayto the existing RoW. This shall contribute to global warming as sink for carbon sequestration will be lost. During transport and clearing activities, operation of the vehicles and machine will also result in the emission of green house gases such as methane and CO. This impact is rated **Medium** and the implementation of the mitigation measures in Table 8.6 shall reduce the impact to a **minor** level.

8.6.2 Impacts on Ambient Noise Level

The assessment of potential impact on **noise**, sources, rating criteria and mitigation measures are presented in Table 8.7.

Table 8.7: Assessment of Impacts and mitigation measures on ambient Noise impact During InitialDecommissioning and Preconstruction Phase

Impact	Sources of Impact	Mitigation Measures	Impact on Noise		
Statement		Integrated in Project			
		Design			
NQ1: Increase	Dismantling of tower	Develop a detailed plan	Impact criteria	Rating	
in ambient	foundation	for daily activities on site	Legislature	3	
noise level and		(work start and close	Stakeholder concern	1	
Vibrations	Tower dismantling	time) and agree with the	Severity	2	
	and unstringing of	stakeholders around the	Scale	1	
	conductors	site that relates to noise	Frequency	4	
		control for relevant work	Overall rating	35	
	clearing of existing	practices and discuss	Impact Significance	Medium	
	access road and	this with staff during			
	RoW	health & safety briefings			
	Transport of				
	materials to and				
	from site				
Mitigation meas	ures			1	
Select 'low noise	e' equipment or method	ls of work			
Avoid dropping	materials from height, w	vhere practicable			
Limit work activities to daytime only					
Ensure maintenance of vehicles and equipments					
Provide and encourage use of PPEs such as earmuffs to cushion high noise level					
Residual Impact	t				
Negligible					

Thebaseline noise levels were above regulatory limit for schools, residential areas and churches, the project shall add to the baseline noise level during this phase, the impact is rated **Medium**. However, implementation for the mitigation measures listed in Table 8.7 shall reduce the impact to **Negligible**.

8.6.3 Impacts on Soil and Geology

The summary of the potential impact on **soil and geology**, sources, rating criteria and mitigation measures are presented in Table 8.8.

Impact	Sources of	Mitigation Measures	Impact on Soil and geology
Statement	Impact	Integrated in Project	
		Design	
SQ1: Change	clearing of	Limit vegetation clearing	Impact criteria Rating
in soil structure	existing	only to the already	Legislature 2
SQ2:	access road	existing RoW	Stakeholder concern 1
Exposure of	and RoW		Severity 3
soil to erosion			Scale 1
	Dismantling of		Frequency 5
	tower		Overall rating 35
	foundation		Impact Significance Medium
	Transport of		
	materials to		
	and from site		
Mitigation meas	ures	1	

Table 8.8: Soil and Geology Impacts During Initial Decommissioning and Preconstruction Phase

Ensure that the land around tower sites is physically restored (include revegetation where possible) Use overburden from specific tower foundations to establish new tower foundations during construction

Use of existing track for transport of man and material to the extent possible.

Limit vegetation clearing only to the immediate area as required Reforestation of affected areas after construction Include mitigation measures for upturned soil due to towers base diggings Residual Impact Minor

Impact Description

S1: Transportation of materials to site may change the structure of the soil making it more compacted. Clearing of vegetation for access round widening will also expose the soil to water erosion. Soils in the project area are prone to erosion. This impact is rated **Medium** according to the criteria in Table 8.8 S2: Minimal widening of the existing access roads linking the major access road to the RoW is likely to render soils vulnerable to water erosion. This impact is also rated **Medium**. Implementation of the mitigation measures in Table 8.8 will reduce both impacts to **Minor**

8.6.4 Impacts on Surface and Groundwater

The potential impact on **water resources**, sources, rating criteria and mitigation measures are presented in Table 8.9.

Impact	Sources of Impact	Mitigation Measures	Impact on water resources
Statement		Integrated in Project	
		Design	
W1: Potential	Dismantling of tower	Accidental spills from	Impact criteria Rating
surface and	foundations	machine maintenance	Legislature 3
groundwater		shall be properly	Stakeholder concern 1
contamination	Clearing of access roads	managed	Severity 3
W2: Potential	and RoW		Scale 1
groundwater			Frequency 4
contamination	Operation and		Overall rating 32
	maintenance of		Impact Significance Medium

Table 8.9: Impacts on water Resources during Initial Decommission and Preconstruction Phase

W3:	preconstruction				
Sedimentation of	equipment/machines				
streams and					
Rivers					
Mitigation measures	S	L			
Accidental	spills from machine mainten	ance shall be properly man	aged		
Use of train	ned personnel for tower work	S			
Limiting cle	aring to the RoW				
Herbicides	shall not be used to eradicat	te vegetation			
Implement	where appropriate sediment	run-off controls and visually	y inspect after rainfall ev	ents	
 Lay down a 	areas shall be designed to in	clude erosion control			
Reclaim as	s practicable possible the t	topography of excavated o	or compacted upland a	reas upon	
completion of activities					
• Install siltation traps within the drainage design to collect silt and sediments ensuring that they do not					
end up in a	end up in adjacent aquatic areas.				
Avoid cross	• Avoid crossing permanent waterways with machinery; if necessary, locate the crossing where the				
banks are stable and the waterway most narrow areas.					
Residual Impact					
Negligible					

Impact Description

W1: Baseline surface water turbidity levels were above regulatory limits at all sampling points. Earthworks during tower dismantling will potentially produce overburden which may be washed down by rain into nearby water bodies. This shall add to the baseline turbidity level which is currently above WHO regulatory limits Vegetation clearing will increase runoff rate into these water bodies, adding to the present turbidity levels. Also, runoff may carry oil spilled accidentally during machine/equipment repair and maintenance into nearby water bodies.

W2: Depending on the magnitude of spill, huge accidental spill may seep into groundwater region and contaminate the water source. This shall lead to groundwater pollution thus, rendering these waters unsafe for drinking.

W3: Clearance of existing vegetation will expose the upper layers of the soil horizon to soil erosion. The transport of eroded soil into surface water resources, will impact on water quality. The stockpiling of excavated earth and construction materials can result in runoff to the water bodies.

W1, W2, and W3: On the overall, impacts resulting to sedimentation problems and groundwater/ surface water and groundwater contamination problems are predicted to have a medium significance. Implementation of the actions outlined in Table 7.9 shall reduce the impact to negligible.

8.6.5 Impact on Biodiversity

The potential impact on **biodiversity**, sources, rating criteria and mitigation measures are presented in Table 8.10.

Impact Statement	Sources of Impact	Mitigation Measures	Impact on biodiversity
		Integrated in Project	
		Design	
B1(A): Loss of	(1) Vegetation	Final route	Impact criteria Rating
threatened species and	clearing for access	optimization to	Legislature 3
plants of important	road widening	possibly avoid	Stakeholder concern 3
indigenous uses	(2) Transport of men &	locations of	Severity 3
B1 (B): Habitat loss	materials	Threatened species	Scale 2
B1(C): Migration of		(See Baseline data)	frequency 5
fauna species as a			Overall rating 55
result of			Impact Significance Medium
decommissioning noise			
and vibrations			
Mitigation measures		L	

Table 8.10:	Biodiversity	/ Impacts	during Initia	I Decommissior	n and Precon	struction Phase

Clearing of vegetation (which are habitats of wild anials) shall be minimized and restricted to the RoW Preconstruction equipment shall be optimally maintained in order to reduce noise generation that may lead to species migration Enlighten contractors and third-party agents against indiscriminate poaching of wildlife during clearing

Residual Impact

Medium

Impact Description

It is estimated that a negligible vegetal biomass shall be cleared for the establishment of this project for widening of existing access roads.

B1 (A): Baseline result showed that five flora species were of conservation interest. These are *Sericanthe toupetou* (Endangered), and *Afzelia africana*, *Dalbergia latofolia*, *Ricinidendron heudelotii and Lophira alata*, in the vulnerable category. *Sericanthe toupetou*

Similarly, there are seventeen (17) species inventoried in the study offering Provisioning Services. However, the impacts are rated Low, considering the insignificant vegetal quantity that would be cleared as well as sensitivity of the habitats and the threatened plant species. Implementation of the mitigation measures listed shall reduce these impacts to **Negligible**.

B1 (B): Vegetal clearing for widening of access roads shall result in the small reduction in area of the secondary forest. The impact is rated minor, considering the duration, magnitude and sensitivity of the receptor. Implementation of the mitigation measures shall reduce these impacts to **Medium**

B1 (C): Decommissioning noise and vibrations are expected to impact on the population of mammalian species censored in the project area of influence. The project would render noise sensitive ground dwelling species like the frogs, common rainbow lizard and rats that were censored in this study homeless temporarily. There is also the possibility of accidental fauna kills, hunting and poaching. The impact is rated **Medium**. However, implementation of the mitigation measures shall reduce these impacts to **Low**

8.6.6 Impacts on land use

The potential impact on **land use**, sources, rating criteria and mitigation measures are presented in Table 8.11.

Impact Statement	Sources of Impact	Mitigation Measures	Impact on land use		
		Integrated in Project			
		Design			
LI (A) Involuntary	Clearing of existing	Site clearance activities	Impact criteria Rating		
displacement of PAPs	RoW site	to be restricted to the	Legislature 3		
		minimum required area	Stakeholder 2		
			concern		
		Follow principles and	Severity 3		
		procedures of	Scale 3		
		Resettlement Action	frequency 5		
		Plan (RAP), including	Overall rating 55		
		way forward, micro-	Impact High		
		plans per affected	Significance		
		household			
Mitigation measures					
Site clearance activities to be restricted to the minimum required area					
• Follow principles and procedures of Resettlement Action Plan (RAP), including way forward, micro-					
plans per affected household					
Residual Impact	Residual Impact				
Medium					

Table 8.11: Land Use Impacts during Initial Decommission and Preconstruction Phase

Impact Description

LI (A): The existing properties along the right of way shall also be lost. Over the years, locals have been building and farming under line. Lands consisting part of the RoW have also been sold to strangers moving in into the host communities. There is need for these PAPs to be properly resettled according to principles and procedures spelt out in an efficient and robust RAP. About 40 households shall be displaced. The line also passes through some sections of the Aba Market in the Abia state section of the project area. This

impact is Rated High, however with the development of Resettlement Action Plan (RAP) (on-going) followed by efficient resettlement and compensation process the residual Impact shall be Medium

8.6.7 Impacts on Community Infrastructure, Socio-cultural and Health Status

The potential impact on biodiversity, sources, rating criteria are presented in Table 8.12.

Impact Statement	Sources of Impact	Mitigation Measures	Impact on Community Socio-	
		Integrated in Project	cultural and Health Status	
		Design		
SE1 (A): Risks and	(1) Employment of	Develop a code of	Impact criteria Rating	
tensions between	preconstruction workers	behaviorfor workers	Legislature 3	
incoming expatriate	(2) Influx of workers and	Funding of local	Stakeholder concern 1	
and local workers	marketers	community projects to	Severity 2	
SE1 (B): Violation of	(3) Decommissioning	compensate impacts.	Scale 1	
norm and culture by	works		frequency 3	
incoming workers			Overall rating 21	
SE1 (C): Increase			Impact Significance Low	
incidences of				
communicable & non				
communicable				
diseases				
SE1 (D) Pressure on				
existing social				
infrastructure				
Mitigation measures				
Develop a code	of behaviours for workers			

Table 8.12: Impacts on Community Socio-cultural and Health Status

All workers to receive training on community relations and code of behaviour

Employ workers (especially for activities not requiring high skill levels) majorly from host communities

Management practices aimed at eliminating disease vector breeding sites.

- The provision of alternative facilities for workforce e.g. medical services, firefighting equipment etc.
- Carry out enlightenment and Awareness campaign among workers on health matters especially on communicable diseases.

Residual Impact

Negligible

Impact Description

This impact speaks to the TL

SE1 (A), SE1 (B): TCN shall employ about 500 decommissioning and 300 preconstruction workers. Differences in religious and socio-cultural backgrounds between local preconstruction workers and expatriates may lead to tensions and conflicts. Existing norms and cultures of the host communities may also be violated by these incoming expatriates. These impacts are rated low and application of the mitigation measures shall reduce the impacts to a **Negligible level**.

SE1 (C): The influx of preconstruction workers and marketers into the project area may increase disease incidence rates in the area. Most of these persons may be carriers of communicable diseases such as HIV/AIDS and interaction with the locals may further spread the diseases. This impact is rated low and application of the mitigation measures shall reduce the impacts to a **Negligible** Status.

SE1 (D): Considering the quantity and nature of materials to be used in lines construction, transportation of these materials to site will increase the burden on existing roads in the project area. This shall indirectly affect roads not also captured in the AoI since materials will be moved from Apapa port in Lagos State to the project laydown area. The major roads in the project area to be impacted include The Aba- Port Harcourt express way, Umuikaa-Owerri, Owerri- Onitsha express way. Although the trucks would ply these roads, it is not expected to cause traffic logjam as the number of trucks is few (see Section 3). Besides, Traffic Management Plan would be developed and implemented. This impact has been ranked Minor. Implementation of the impacts shall reduce these impacts to **Negligible**.

8.6.8 Impacts on Traffic and Safety

The potential impact on **Traffic and Safety**, sources, rating criteria and mitigation measures are presented in Table 8.13.

Table 8.13:	Impacts on	Traffic and Safety
-------------	------------	--------------------

Impact Statement	Sources of	Mitigation	Impact on Traffic an	d Safety	
	Impact	Measures			
		Integrated in Project			
		Design			
SE1 (E): Risk of	Transportation of	Implement a traffic	Impact criteria	Rating	
Accidents to locals	materials on-site	safety plan including	Legislature	3	
SE1 (F): Traffic	and wastes offsite	design of access	Stakeholder	3	
congestion	Transport of	point, signalization,	concern		
	decommissioned	speed limits, training	Severity	3	
	materials offsite	of drivers, use of	Scale	3	
		traffic guards,	frequency	5	
		procedures for	Overall rating	60	
		transport of oversized	Impact Significance	High	
		loads (e.g., engines),			
Mitigation measures					
Implement a trai	fic safety plan includi	ng design of access poir	nt, signalization, speed	limits, training	
of drivers, use o	f				
 traffic guards, pr 	rocedures for transpo	ort of oversized loads (e.	g., engines),		
Maintain log of	traffic related inciden	ts, sensitization of road	users and people livin	g close to the	
construction site).				
Periodic mainter	nance of transport ve	hicles			
The contractor	will develop approp	riate strategies to minir	mize the need for training	nsportation of	
supplies and will ensure					
Compliance with all applicable laws, such as maximum load restriction and speed limits.					
An awareness program for truck drivers to speed limits and other precautionary					
Prepare and dis	seminate a Journey	Management Guide (JM	/IG) to the trined vehic	le drivers and	
supervisors					

Residual Impact

Medium

TR1 (A): Increase in traffic during material and personnel transport in the villages and the roads could also be a source of accidents. This impact is rated **High** significance, and implementation of the mitigation measures shall reduce the impact to a **Medium** Level.

TR1 (B): Transportation of decommissioned materials offsite and those for TL construction shall add to the load of traffic laden roads of the project area. This impact is with rated **Medium** significance, and implementation of the mitigation measures shall reduce the impact to a **Minor** Level.

8.6.9 Impacts on Employment and opportunities

The potential impact on **Employment and opportunities**, sources, rating criteria and mitigation measures are presented in Table 8.14.

Impact	Sources of Impact	Enhancement Measures	Impact on impact on
Statement		Integrated in Project	Employment and opportunities
		Design	
SE1 (H)	Material requirement	Prepare a local content plan	Impact criteria Rating
Employment	and sales	to facilitate identification	Legislature
	Access road	and selection of qualified	Stakeholder
	widening	local and Nigerian	concern
	Tower dismantling	companies to provide	Severity
	and unstringing	needed supplies and	Scale
	Dismantling of	services. Include provisions	Frequency
	existing tower	for advance notice to local	Overall rating
	foundations	companies, along with	Impact Beneficial
		selection criteria including	Significance
	Employment of	health and safety, to allow	
	workers	them to prepare for	
		upcoming opportunities	

Table 8.14: Impacts on Employment and Opportunities

Enhancement measures

Prepare a local content plan to facilitate identification and selection of qualified local and Nigerian companies to provide needed supplies and services. Include provisions for advance notice to local companies, along with selection criteria including health and safety, to allow them to prepare for upcoming opportunities

Residual Impact

Beneficial

SE1: Employment of casual un-skilled labour would occur, for short-term contracts or for the entire preconstruction phase. The main jobs that will be available are the widening of existing access roads, tower and tower foundation dismantling, tower unstringing, sales and requirement of materials. Supplies will include raw materials that meet standards as required for the construction of the transmission line facilities. This is a positive impact and as such does not require mitigation. The enhancement measures are stipulated in Table 8.14.

8.7 Construction Phase Impacts and Mitigation Measures

8.7.1 Impacts on Ambient Air Quality

The potential impact on **Ambient Air Quality**, sources, rating criteria and mitigation measures are presented in Table 8.15.

Impact Statement	Sources of	Mitigation Measures	Impact on Ambient air quality
	Impact	Integrated in Project	
		Design	
AQ1 (A): Reduction	Operation of	• Maintain and	Impact criteria Rating
in ambient air	construction	operate all vehicles and	Legislature 3
quality	equipment and	equipment engines in	Stakeholder concern 1
	machine	accordance with	Severity 2
AQ1 (B): Dust		manufacturers	Scale 2
emission from land		recommendations	Frequency 5

Table 8.15: Impacts on Ambient Air Quality

preparation	and	Transportation and	• Maintain and	Overall rating	40
vehicle movem	ents	traffic	operate all vehicles and	Impact Significance	Medium
			equipment engines in		
AQ1 (C) Impa	ct on		accordance with		
climate change			manufacturers		
			specifications, location of		
			stationary generators to		
			facilitate dispersion,		
			restriction of vegetation		
			clearing to only the		
			required area		
Mitigation measures					
Maintain and operate all vehicles and equipment engines in accordance with manufacturers					
recommendations;					
Regular cleaning of equipment, drains and roads to avoid excessive build-up of dirt:					

- Use covered trucks for the transportation of materials that release dust emissions; and
- Speed limits on-site of 25km/hr on unhardened roads and surfaces
- Cover properly loose materials and keep top layers moist
- Use binder material for erosion and dust control for long term exposed surfaces
- Implement re vegetation action plan

Residual Impact	
linor	

AQ2 (A): The movement of vehicles for the construction will result in PM, SO₂, CO, NOx, CO₂ emissions. It is noteworthy to mention that the quantity of emissions is dependent on the vehicle type, amount and their conditions. Light-duty petrol vehicles not equipped with pollution control devices have the highest exhaust emissions during acceleration, followed by deceleration and idling cycles. Frequent cycle changes characteristic of congested urban traffic patterns thus tends to increase pollutant emissions. At higher cruise speeds hydrocarbon and CO emissions decrease, while NOx and CO₂ emissions increase. Emissions from

diesel-fuelled vehicles include particulate matter, NOx, SO₂, CO and hydrocarbons, the majority of which occurs from the exhaust. Operating at higher air-fuel ratios (about 30:1 as opposed to 15:1 characteristic of petrol-fuelled vehicles with electronic fuel injection engines), diesel-powered vehicles tend to have low HC and CO emissions, despite having considerably higher particulate emissions.

Particulates emitted from diesel vehicles consist of soot formed during combustion, heavy HC condensed or adsorbed on the soot and sulphates. In older diesel-fuelled vehicles the contribution of soot to particulate emissions is between 40% and 80%. The black smoke observed to emanate from poorly maintained diesel-fuelled vehicles is caused by oxygen deficiency during the fuel combustion or expansion phase. Particulate emissions from petrol-driven vehicles are usually **negligible**. Such emissions when they do occur would result from unburned lubricating oil, and ash-forming fuel and oil additives.

The impact of emissions arising from vehicles and equipment's associated with construction activities is considered **Medium** and application of the mitigation measures in the Table 8.15 shall reduce the impact **Minor** level

AQ2 (B)Dust emission from land preparation and vehicle movements

The dust emissions arising from the construction activities of the Project are as a result of land preparation activities and vehicular movements. Dust emissions have the potential to create impact on the close receptors due to the physical appearance, deposition on the roof of the residential areas and creating nuisance for the surrounding community. Removal of material usually takes place with a bulldozer, cleared material is then stored in piles for later use or during rehabilitation procedures. Fugitive dust is generated during the clearing of material, as well as from wind-blown dust generated from cleared land and exposed material stockpiles. Dust problems can also be generated during the transportation of the material, usually by truck, to the stockpiles. This dust can take the form of entrainment from the vehicle itself or due to dust blown from the back of the trucks during transportation.

The impact is rated **Medium**. However, implementation of the mitigation measures shall reduce the impact to **Minor**.

AQ2 (C) Impact on climate change

A series of stages are involved in estimating the climate change impact of an electricity transmission network. During the construction stage, following activity is considered for climate change impact.

Process from material production:

GHG will be emitted from the manufacturing process of construction material though it is indirect impact of the project, but still necessarily considered as part of lifecycle of the project. The assumption used for the GHG emission calculation on this item, based on Global Emission Model of Integrated Systems (GEMIS) database (World Bank, 2010).

The weight of each tower was estimated to be 4.5 tons (for 330 kV) and 2.8 tonnes (for 132 kV). Normal Voltage 330 kVrms (for 330 kV) and while 132 kVrms (for 132kv). The average distance between each 330 kV tower is 400 m – 450 m and 325 – 350 m (for 132 kV). Right of way for 330 kV TL is 50m while that of 132 kV TL is 30 m. It is estimated that the height of towers will range between 28m -32m (for 330 kV).

Total emissions of GHGs from project equipment and vehicles were determined using the SCEG tool version 5.1 created by the US Environmental Protection Agency. Results are presented in Table 8.16.

GHG supply Component	GHG Demand Com		ponent
Project Phases	MTCO ₂	Activities by	MTCO ₂
	Equivalence	PAPs	Equivalence
Initial Decommissioning	196.06	Energy	636,609.66
		consumption rate	
Construction	73.20	Fuel wood for	75,940,746.9
		cooking	
	269.25		76,577,356.56
Total GHG Footprint	76,577,625.81		
Project predicted to reduce	7.5 x 76,577,625.81/	100	5,743,321.94
GHG emisions by 7.5 % in			
the project area			
Net MTCO ₂ Equivalence	70,834,303.88		

Table 8.16:	Total GHG Emission from Activities Related to the Project
-------------	---

See Chapter 4 for detailed calculations Source GNL 2019

GHG will be emitted from material production as well as energy use in construction activity. GHG emission during construction stage is short and temporally, the impact on climate change is considered to be **Medium**. Implementation of mitigation measures will reduce impacts to a **low** level.

8.7.2 Impacts on Ambient Noise Level

The potential impact on **Ambient Noise Level**, sources, rating criteria and mitigation measures are presented in Table 8.17.

Impact	Sources of Impact	Mitigation Measures	Impact on Ambient noise level		
Statement		Integrated in Project Design			
NQ2: Increase	Operation of	Inform all potentially impacted	Impact criteria	Rating	
in ambient	construction	residents of the nature of works	Legislature	3	
noise level	equipment and	to be carried out; the expected	Stakeholder concern	1	
	machine	noise levels and duration, as well	Severity	2	
		as providing the contact details	Scale	2	
	Transportation and	of the CLO.	Frequency	5	
	traffic		Overall rating	40	
			Impact Significance	Medium	
Mitigation measu	ures				
Develop a deta	Develop a detailed plan that relates to noise control for relevant work practices and discuss this with				
construction staff during health & safety briefings					
Select 'low noise	e' equipment or metho	ds of work			
Restrict construct	ction activities to daytir	ne			
Avoid dropping r	materials from height,	where practicable			
Avoid metal-to-metal contact on equipment					
Residual Impact					
Minor					

Table 8.17: Impacts on Ambient Noise Level

NQ 2: During the construction phase, construction activities, traffic, as well as the use of construction equipment and machinery are likely to lead to a temporary increase in noise levels that may disturb neighboring communities and local fauna.

The project area is noise degraded. Noise levels were above recommended threshold limit for specific receptors which include residential, schools and churches. The project shall add to the baseline noise level. Communities likely to be affected include built up areas and commercial farming areas such as; Osisioma, Aba North, Aba South, Ugwunagbobo, Idemili South, Ihiala, Ekwusigo, Ogbaru, Mbatoli, Ngor-Okpala, Oru West, Oru East, Owerri North, Owerri West, Owerri Municipal, Njaba communities. The construction activity will be undertaken during daytime. Construction activities will be concentrated and done sequentially so that no area is prone to long duration of noise impacts. There will be some noise generated from the movement of tractors and trucks transporting the materials and equipment, but the traffic volumes are expected to be occasional.

Considering the construction activity schedule and nature of construction, overall noise impact on nearby sensitive receptors with embedded controls in place will be of **Medium** significance, however, application of the mitigation measures will reduce the impact to **Minor** level.

8.7.3 Impacts on Soil and Geology

The potential impact on **Soil and Geology**, sources, rating criteria and mitigation measures are presented in Table 8.18.

Impact Statement	act Statement Sources of Impact Mitigation Measures		Impact on Soil and Geology
		Integrated in	
		Project Design	
SQ2 (A): Change to soil	Creation of tower	Ensure that the land	Impact criteria Rating
structure (erosion and	foundation	is physically restored	Legislature 2
compaction	Erection of tower	(include re	Stakeholder 1
SQ2 (B): Potential		vegetation where	concern
contamination of soil		possible) before	Severity 3

Table 8.18: Impacts on Soil and Geology

from inadvertent	leaving to	next tower Scale	1
release of hazardous or	location	Frequency	5
contaminating material		Overall rating	35
(liquid fuel, solvents,		Impact	Medium
lubricants, aluminum		Significance	
oxide paint, etc.			

Mitigation measures

- Backfill foundation pits by the excavated soils which will resemble the order of the original soil layers.
- Ensure that the land is physically restored (include revegetation where possible) before leaving to next tower location and before the next rainy season.
- Accidental spills from machine maintenance shall be properly managed
- Develop project specific waste management plan and ensure proper implementation
- Provide adequate containers for waste collection
- Periodically audit contractor activities to check the level of compliance to regulatory waste management requirements
- Ensure engagement of government approved waste management contractors
- Safe operating practices are enforced during construction

Residual Impact	
Minor	

SQ2 (A): During the construction phase, the main activities likely to affect soil structure and quality are digging of foundation pits for the towers and removal of vegetation (for foundation purposes). Foundations will be dug up to variable depths, depending upon the tower type and soil characteristics. Although existing roads and tracks will be used to access the corridor, vehicle movement around the project area can lead to soil compaction in those areas where soils are clayey or highly saturated. This impact is rated **medium** and shall be reduced to **Minor** if the proffered mitigation measures are implemented.

SQ2 (B): Also, Soils can be contaminated during the construction phase by accidental oil/fuel spills from heavy machinery either at storage yards or work sites. In the event of an accidental spill, the proportion of

soil contamination will depend on the magnitude of these accidental events. A significant amount of solid waste (including, wood, metal scarps, office and domestic wastes, etc.) will be generated in this phase of the project. The methods put in place for handling and disposing of these wastes to be generated play an important role in the significance of impacts expected from wastes management. Waste handling and disposal have been assessed to pose a **medium** impact to the environment. Application of specific mitigation measures such as de-compaction of soils following construction as well as avoiding construction activities during times when soils are saturated and avoiding storage of materials within these areas as well as implementation of an Emergency Response Plan will help manage accidental spills properly will reduce the impact to a **Minor** Status.

8.7.4 Impacts on Water Resources

The potential impact on **Water Resources**, sources, rating criteria and mitigation measures are presented in Table 8.19.

Impact Statement	Sources of	Mitigation Measures	Impact on Water Resources	
	Impact	Integrated in Project		
		Design		
WQ2 (A): Potential surface	Operation and	Rivers and streams shall	Impact criteria Rating	
contamination	maintenance of	not be dammed for the	Legislature 3	
WQ2 (B): change in	construction	purpose of water	Stakeholder 1	
hydrological flow regimes of	machines and	abstraction	concern	
surface water	equipment		Severity 3	
WQ2 (C): Potential		Deepen foundations of	Scale 1	
groundwater contamination		transmission towers in	Frequency 5	
WQ2 (D): Exploitation of		areas prone to landslide	Overall rating 40	
water resources			Impact Medium	
			Significance	
Mitigation measures				
Rivers and streams shall not be dammed for the purpose of water abstraction				

Table 8.19: Impacts onWater Resources

- Accidental spills from machine maintenance shall be properly managed
- Continuous training of workers on HSE protocols
- Conducting daily safety briefings
- using existing roads instead of constructing new ones and limiting construction-related traffic (vehicles, machinery) to work areas
- pylon spacing of an average of 300- 400m
- no pylons will be installed in any of the rivers, since all are less than 500m in with

Residual Impact	
Minor	

Sources of impacts to water resources are removal of vegetation, vehicle movement along the RoW and construction sites and excavation/piling for tower installations.

WQ2 (A): Vegetation removal in swampy areas can increase soil erosion in erosion prone areas, causing sediment to be deposited into the water bodies, especially during rain events. This shall likely add to the baseline surface water Turbidity levels at all sampling points which are above threshold limits. These areas are likely to be most impacted. Poor waste management practices are likely to have an effect on water quality (e.g. improper waste disposal in surface waters). The risk of accidental oil spills from heavy machinery during construction phase could result in surface water contamination. This shall likely add to the baseline surface water DO levels at all sampling points since hydrocarbon utilizing microbes are known to increase DO levels in water. However, the contamination level resulting from accidental spills will depend on their magnitude which of this case is small, but the receptor is very sensitive leading to a Medium Impact Rating. However, proper application of the mitigation measures listed in the Table above will reduce the impacts to a **minor** level.

WQ2 (B): Construction of access routes as well as vehicular movement along the construction sites can result into changes in hydrological flow regimes of watercourses. Depending on the level of disturbance, watercourses can be temporarily or permanently impaired. Erection of pylons within watercourses could also potentially modify watercourse dynamics, reducing water flow and ultimately converting a lotic system into a lentic system. This impact is rated **Medium**. However, mitigation measures such as using existing roads

instead of constructing new ones and limiting construction-related traffic (vehicles, machinery) to work areas will reduce impacts on water resources to **Minor**.

WQ2 (C): Groundwater could be contaminated during digging of foundation pits for the tower, particularly near watercourses or the areas around any of the water bodies in the area. This Impact is rated **Medium** and the application of the mitigation measure shall reduce the impact to **Minor**.

WQ2 (D): Water to be used for construction activities shall be sourced from borehole. The impacts are rated **Medium** and implementation of the mitigation measures listed above shall reduce impacts to **Minor status**.

8.7.5 Impacts on Aquatic Species

The potential impact on **Aquatic species**, sources, rating criteria and mitigation measures are presented in Table 8.20.

Impact	Sources of	Mitigation Measures	Impact on Aquatic biota during	
Statement	Impact	Integrated in Project Design	construction	
AS 1:	Tower erection	Natural flow of a River shall	Impact criteria	Rating
Loss/disturbance	Transport and	not be blocked	Legislature	3
of aquatic species	traffic		Stakeholder concern	1
			Severity	3
			Scale	2
			Frequency	5
			Overall rating	45
			Impact Significance	Medium

Table 8.20: Impacts onAquatic species

Mitigation measures

Conduct activities during the dry season to minimize disturbance of sensitive water bodies

- Adjust pylon siting to span rivers and stream areas, or limit equipment access in water bodies, wherever possible.
- Perform all vegetation clearing work manually along streams/rivers.

- Avoid vegetation clearing along stream shores and on steep slopes.
- Based on an appropriate project design, avoid erecting towers within water bodies. If unavoidable, select the most optimized site for each tower considering human uses and areas of higher ecological integrity.
- Prohibit construction of permanent access roads along riverbanks or in areas where soils are saturated
- Maintain vegetated buffer zones within and around rivers and along both sides of watercourse crossings.
- Complete project timely to enable ecosystem rejuvenation and stabilisation

Residual Impact	
Minor	

AS 1: Construction related activities will result in water quality deterioration with attendant impacts on macroinvertebrates, fishery resources. This impact would however be limited in terms of duration and is ranked at a medium significance level. Implementation of the mitigation measures is predicted to reduce the impact to **Minor.**

8.7.6 Impacts on Biodiversity

The potential impact on **Biodiversity**, sources, rating criteria and mitigation measures are presented in Table 8.21.

Table 8.21: Impacts on Biodiversity

Impact Statement	Sources of	Recommendation Measures	Impact on Biodiversity during
	Impact	Integrated in Project Design	construction
B2(A): Further	Construction of	Re-vegetation shall be done	Impact criteria Rating
migration of fauna	tower foundation	using native species for erosion	Legislature 3
species as a result of	Transport and	control	Stakeholder concern 2
construction noise	traffic		Severity 1
B2 (B): Introduction			Scale 1
of invasive and alien			Frequency 2
species			Overall rating 14

				Impact Significance	Low
Mitigat	ion measures				
٠	Restrict constr	ruction activities, inc	luding vehicle movements and mate	erial storage, inside the F	RoW
٠	Minimize the c	construction of new a	access roads. Promote the use of ex	kisting access roads for n	nachinery
	and vehicle me	ovements.			
٠	Promote the u	ise of existing roads	for transporting material and towe	r parts to the construction	on sites in
	order to reduc	e the project's footp	rint and minimize the need for new a	access roads	
٠	Re-vegetation	should use species	s locally native to the site and not	use any environmental v	weeds for
	erosion contro	I			
Residu	al Impact				
Negligi	ble				

B2 (A): During construction, there shall be faunal disturbance along the entire length of the transmission line RoW in which sensitive ground dwelling animals especially from the reptilian taxon will further migrate from the area during construction. This impact is short termed and rated Low. The application of Mitigation Measures will reduce the impacts to a **negligible** level.

B2 (B): There is possibility of creating fertile loci for alien and invasive flora species being introduced to the area during material transport (sand, gravel). The proliferation of invasive species can have negative impacts on local species, by outcompeting native taxa. Alien invasive species have the potential to substantially modify wildlife habitat which can impact associated fauna populations. *Chromolaena odorata, Mimosa pudica and Dalbergia sisso* listed as invasive to Nigeria were found in this study. This impact is rated Low. The application of Mitigation Measures will reduce the impacts to a **negligible** level.

8.7.7 Community Agitation

The potential impact on **Community Agitation**, sources, rating criteria and mitigation measures are presented in Table 8.22.

Table 8.22: Impacts on Community Agitation

Impact Statement	Sources of	Mitigation Measures	Impact on community	agitation
	Impact	Integrated in Project	during construction	
		Design		
CA1: Agitation by	Construction	Engage communities in	Impact criteria Ra	ating
locals linked to	activities	the construction activities	Legislature 3	
compensation		to enhance transparency	Stakeholder concern 2	
		and involvement	Severity 3	
			Scale 2	
			Frequency 5	
			Overall rating 50	
			Impact Significance Me	edium

Mitigation measures

- Develop and implement a resettlement action plan to ensure equitable
- settlement of all project affected persons
- Develop, establish and publicize effective grievance procedures;
- Early stakeholders' engagement sessions are held, and all agreed issues properly documented and signed.
- All affected stakeholders and legacy issues are identified early, clearly defined, and agreed upon.
- Stakeholders (communities, Govt., landowners, etc.) are adequately consulted and relevant issues addressed
- Agreed fair compensation/rent for land are paid to identified owners promptly as per set standards.
- As far as possible employ persons from the surrounding communities during the construction phase of the development to reduce the numbers of persons that will migrate to the area seeking employment.
- The EPC will develop a community relations and engagement plan that identifies fair strategies of engagement for all communities. Contents of the Community Relations and Engagement Plan
- Enhance ongoing consultations with local communities (with good representation) by TCN to create continuous dialogue, trust and planning of community development activities. Coordinate Stakeholder Engagement of all partners of industrial site, prepare and implement Stakeholder Engagement Plan

Maitain consultation with relevant stakeholders through out the life cycle of the project
Residual Impact
Minor

There is tendency for agitations by some groups of people or individuals over non-satisfactory engagement and compensations over land and other associated properties. This could lead to strife within communities or groups. During labour recruitment and prior to full construction activities, there is also potential for conflicts between neighbouring communities or individuals over employment quota systems, sub-contracting procedures or recruitment methodology. This will pose **High** significant impact on the project construction phase. However, implementation the mitigation measures will reduce the impact to a **Minor l**evel.

8.7.8 Impacts on Socio-economic

The potential impact on **Socio-economic**, sources, rating criteria and mitigation measures are presented in Tables 8.23, 8.24, 8.25 and 8.26.

Impact Statement	Sources of Impact	Mitigation Measures	Impact on Socio-economic
		Integrated in Project	
		Design	
SE2 (A): Risking	Employment of	Develop a code of	Impact criteria Rating
tensions between	construction workers	behaviours for workers	Legislature 3
outside (partly			Stakeholder 1
possibly expatriate		Enhance ongoing	concern
and local worker	Temporary influx of	consultations with local	Severity 2
SE2 (B): Violation	outsider and marketers	communities (with good	Scale 1
of norm and	to the communities	representation) by TCN	Frequency 3
culture by		to create continuous	Overall rating 21
outsiders, workers		dialogue, trust and	Impact Low
and marketers		planning of community	Significance
		development activities.	

Table 8.23: Impacts on Socio-economic

SE3 (C): Increase	
incidences of	Coordinate Stakeholder
communicable &	Engagement of all
non	partners of industrial
communicable	site, prepare and
diseases	implement Stakeholder
	Engagement Plan

Mitigation measures

- Develop a code of behaviours for workers
- All workers to receive training on community relations and code of behaviour
- Employ workers majorly from host communities
- Management practices aimed at eliminating disease vector breeding sites.
- Awareness/health campaigns shall include other communicable diseases such as dysentery and cholera
- Enhance ongoing consultations with local communities (with good representation) by TCN to create continuous dialogue, trust and planning of community development activities.
- Coordinate Stakeholder Engagement of all partners of industrial site, prepare and implement Stakeholder Engagement Plan
- Develop a health plan to address potential health issues
- Initiate /enforce TCN corporate health awareness programs for malaria, AIDS, etc)
- Provide site medical personnel to attend to emergency situations
- Engage the services of retainer clinics to manage health issues
- Educate workforce on the prevention of malaria as well as encourage the use of mosquito nets Ensure personnel use appropriate PPE
- Prepare and implement emergency response plan
- Ensure availability of first aid facilities onsite
- Provide information, education and communication about safe uses of water and occupational hygiene and safety
- Ensure Environmental Management for vector control and avoidance via settlement location and

Develop and implement safe food storage and handling practices
Residual Impact
Negligible

SE2 (A), SE2 (B): Potential socio-economic impacts are expected to arise from socio-cultural conflicts between the construction workforce and natives due to contrast in belief and religion systems. This may also lead to the violation of the existing traditional norms in the project area. These impacts are rated Low as application of the mitigation measures shall reduce the impact to a **Negligible** status

SE3 (C): Construction activities have the potential to create new malaria vector (mosquito) habitats due to establishment of small pit lakes. An influx of workers with no or partial immunity to malaria parasite (*Plasmodium sp*) increases the risk of serious illness which may result to death. This impact if not managed is expected to pose a major significance characteristic. Influx of workers into the project area also increases the risks of Sexually Transmitted Diseases (STDs) and could impact adversely on the spread of HIV/AIDS. This impact if left unmanaged may result in long term health issues which may eventually lead to fatality. Impact arising from this is ranked as **High**. Application of the mitigation measures would reduce the impact to a **Minor** level.

Table 8.24 is an assessment of Socio-economic impacts on existing social infrastructure of the project are expected to occur during the construction phase.

Impact Statement	Sources of Impact	Mitigation Integrated	Measures in Project	Impact on infrastructure	Socio-
	Influx of outside workers	Design		Impact criteria Legislature	Rating

Table 8.24: Impacts on Socio-infrastructure

SE2 (D): Pressure on		Funding	of local	Stakeholder	1
existing social		community	projects to	concern	
infrastructure		compensate	e for impacts	Severity	2
				Scale	1
				frequency	5
				Overall rating	25
				Impact	Low
				Significance	
Mitigation measures					
The provision of alternativ	ve facilities for workforce e.g	. medical ser	vices, fire-figh	ting equipment etc.	
Funding of local commur	nity projects to compensate	for adverse/	negative impa	acts after consultat	ions with
community members.					
Residual Impact					
Negligible					

SE2 (D): Another challenge on the socio-economic aspect is increased demand on existing infrastructures due to influx of people to the project area. These impacts have been ranked on a **Low** significance level and application of the mitigation measures shall reduce the impact to a **Negligible** status.

Table 8.25 is an assessment of Socio-economic impacts on road accidents, kidnappings and traffic congestion.

	-		-
Impact Statement	Sources of	Mitigation Measures	Impact on accidents,
	Impact	Integrated in Project	kidnapping, banditry and traffic
		Design	congestion
SE2 (E): Risk of	Transportation of	Implement a traffic safety	Impact criteria Rating
road Accidents and	materials on-site	plan including design of	Legislature 1
Kidnapping		access point, signalization,	Stakeholder concern 1
		speed limits, training of	Severity 2

Table 8.25: Impacts on accidents, kidnapping and traffic congestion

SE2 (F): Traffic	drivers, use of traffic guards,	Scale	1
Congestion	procedures for transport of	Frequency	5
	oversized loads (e.g.,	Overall rating	25
	engines	Impact Significance	Low
Mitigation measures			
Implement a traffic safety plan in	ncluding design of access point,	signalization, speed lim	its, training
of drivers, use of traffic guards,	procedures for transport of overs	sized loads (e.g., engine	s),
• Maintain log of traffic related in	cidents, sensitization of road us	sers and people living c	lose to the
construction site.			
All vehicles are certified road / w	ater worthy prior to being mobili	zed for work activities.	
Compliance to all roads safety tr	ansport rules including speed lir	nits	
Competency training and certific	ation of drivers before mobilizati	on.	
Limit movement to daytime only			
Setting and enforcing speed lim	its of 100km/hr (major roads) 4	0-60km/hr (built-up area	as) and 10-
30km/hr (construction sites);			
Consultation and good public rel	ation with the stakeholder comm	nunities.	
• Ensure government approved s	security personnel is used on t	ransport vehicles and t	poats when
warranted			
Coordinate work activities to avo	id heavy traffic periods		
Use warning signs and traffic wa	ardens/directors		
Ensure activities causing blockage	ges at road crossings are carried	out within shortest time	practicable
Develop appropriate strategies t	o minimize the need for transpo	tation of supplies	
Ensure compliance with all appli	cable laws, such as maximum lo	ad restriction and speed	d limits
Prepare and impment JMG for the second	ne trained drivers and superviso	rs	
Residual Impact			
Negligible			

Construction and transportation activities will increase traffic congestion, risk of injuries, hostage and kidnapping as well as damage to assets.

SE2 (E): Accidents arising from road trips (transport of materials and personnel) along mobilization routes may result in injury or loss of life of personnel as well as damage to company assets. This impact is rated **Low** significance, and implementation of the mitigation measures shall cascade the impact to a **Negligible** Level.

Tb1 (F): Transportation of men and materials for TL, construction shall add to the load of traffic laden roads of the project area. This include: Aba- Port Harcourt express way, Umuikaa-Owerri, Owerri- Onitsha express way. This impact is rated **Medium** significance, and implementation of the mitigation measures listed shall reduce the impact to a **Minor** Level.

The potential on **impact on Employment and opportunities**, sources, rating criteria and mitigation measures are presented in Table 8.26.

Impact Statement	Sources of Impact	Enhancement Measures	Impact on impact on
		Integrated in Project	Employment and opportunities
		Design	
SE2 (G): Supply chain	Material	Prepare a local content plan	Impact criteria Rating
opportunities for	requirement	to facilitate identification and	Legislature
Nigerian companies	Employment of	selection of qualified local	Stakeholder concern
and locals that can	workers	and Nigerian companies to	Severity
provide goods and		provide needed supplies	Scale
services needed by		and services.	Frequency
the company			Overall rating
SE2 (H)Employment		Include provisions for	Impact Significance Beneficial
		advance notice to local	
		companies, along with	
		selection criteria including	
		health and safety, to allow	
		them to prepare for	
		upcoming opportunities	
Enhancement measure	S	1	

Table 8.26: Impacts on Employment and Opportunities

Prepare a local content plan to facilitate identification and selection of qualified local and Nigerian companies to provide needed supplies and services. Include provisions for advance notice to local companies, along with selection criteria including health and safety, to allow them to prepare for upcoming opportunities

Residual Impact

Beneficial

SE2 (G), SE2 (H): Based on the results of the socio-economic assessment, the un-employment rate in the area is high. The locals are however optimistic about possibility of job availability with the project. Any available jobs will provide an immediate positive impact on the employment and income situation at the level of the study area as well as at the regional and national levels. The impact is beneficial. Employment of casual un-skilled labour would occur, for short-term contracts or for the entire construction phase. This could result in a positive spin-off during the construction phase as any level of employment in this region of moderate unemployment and low wage levels will have a beneficial social spinoff. The impact is beneficial. During the construction phase, there will be provision for sub-contracting to local supplies. Supplies will include raw materials that meet standards as required for the construction of the transmission line facilities. Equal opportunities will be given to sub-contractors from the host communities. This is a positive impact and as such does not require mitigation.

The potential impact on **loss ofemployment**, sources, rating criteria and mitigation measures are presented in Table 8.27.

Impact Statement	Sources of Impact	Mitigation Measures	Impact on loss of employment
		Integrated in Project	
		Design	
SE2 (J): Loss of	Demobilization on	Organize career	Impact criteria Rating
employment	completion of	development workshops,	Legislature 3
	construction	skills acquisition and	Stakeholder 2
		enhancement	concern
			Severity 1

Table 8.27: Impacts on loss of employment

		Scale	1		
		frequency	5		
		Overall rating	35		
		Impact Significance	Medium		
Mitigation measures					
Organize career development worksh	nops, skills acquisition and enl	hancement			
programs to further empower the workforce					
 Project will develop, establish and publicize grievance procedures; 					
Adequately pay due wages for worked period and settle all financial commitments to workforce before					
demobilization					
Residual Impact					
Low					

SE2 (J): Completion of the construction phase of the project will lead to loss of employment and business opportunities. This impact has been assessed with a **medium** significance level. Implementation of the above measures reduces the impact to **Low**

8.7.9 Visual Impacts

The potential on **Visual Impacts**, sources, rating criteria and mitigation measures are presented in Table 8.28.

Impact	Sources of	Mitigation Measures	Impact on Visual Impacts
Statement	Impact	Integrated in Project Design	
VI 1: Visual	Installation of	Rehabilitate disturbed areas	Impact criteria Rating
effects	towers	around pylons as soon as	Legislature 0
		practically possible after	Stakeholder concern 1
		construction. This should be	Severity 1
		done to restrict extended	Scale 3
		periods of exposed soil.	Frequency 5

 Table 8.28:
 Assessment of Visual Impacts

				Overall rating	60
				Impact Significance	Low
Mitigatio	on measures	S			
•	Rehabilitate	e disturbed area	s around pylons as soon as pra	actically possible after cons	struction. This
	should be c	done to restrict e	ktended periods of exposed soil.		
Restore temporal work zones after construction					
Rehabilitation of disturbed areas around pylons					
Residual Impact					
Negligib	ble				

VI 1: Aesthetic impacts during the construction phase will be limited to work zones. This impact shall not be felt on RoW but in lawdown areas and widened access roads. This will change the landscape in these areas. Domestic waste might be disposed to construction area, creating visual impact. Construction waste will be disposed at sites approved by relevant waste management. The duration of the construction activity is short term in nature and sensitivity of the area is also low, thus the impact is rated low. When all new temporary work zones will be restored after construction and Rehabilitation of disturbed areas around pylons achieved, this impact shall reduce to a **Negligible** Status.

8.7.10 Impact on Workplace Health and Safety

The summary of the potential impacts on **workplace Health and Safety**, sources, rating criteria and mitigation measures are presented in Table 8.29.

Impact Statement	Sources of Impact	Mitigation Measures	Impact on workplace Health
		Integrated in Project	and Safety
		Design	
HS1: Risk of	Tower erection	Develop project specific	Impact criteria Rating
workplace	Earthwork	health and safety	Legislature 3
accidents and	Tower stringing	procedures based on	Stakeholder 2
hazards		Wärtsilä's standard	concern

Table 8.29: Assessment of Impacts on workplace Health and Safety

Establishment of tower	health and safety	Severity	3
foundation	procedures, including	Scale	2
	provisions for training	Frequency	5
	and certifications to be	Overall rating	50
	followed by all workers	Impact	High
	including subcontractors.	Significance	
	Especially slip-trip and		
	fall hazards with tower		
	erection and		
	electrocution need		
	attention.		
1		1	

Mitigation measures

- Develop project specific health and safety procedures based on Wärtsilä's standard health and safety procedures, including provisions for training and certifications to be followed by all workers including subcontractors. Especially slip-trip and fall hazards with tower erection and electrocution need attention.
- A local hiring office (or offices) to be set-up for use by all contractors to advertise positions, receive applications, and provide guidance to applicants.
- Periodic training of staff on workplace health and safety
- Make sure all personnel are qualified and certified for their relevant works
- Make sure approved safe work procedures are provided and complied with at all times prior to commencement of work
- Ensure SHE briefings, job hazards identification and controls, prior to
- commencement of work activities
- Use of appropriate personal protective equipment (PPE) e.g. rubber hand gloves, hard hats, safety boots, etc. by all personnel at the project site
- Limit work activities to daytime only
- Ensure availability of first aid facilities onsite
- Ensure retainer clinics are engaged and site medical personnel are available in case of accidents

- Maintain medical emergency response plan so that injured or ill persons can promptlyaccess appropriate care.
- Ensure all fuel storage tanks are kept at safe distances from work areas
- Ensure storage areas are identified with caution signs.
- Educate workforce on risks associated around storage areas and prohibit activities (such as smoking) that can ignite storage tanks
- Designate no-smoking and smoke areas
- Hold SHE meetings and talks on fire hazard
- design work area to internationally acceptable standards

Residual Impact	
Minor	

In any civil works, public as well as construction staff SHE risks can arise from various construction activities such as earth works, operation, and movement of heavy equipment and vehicles, storage of hazardous materials, traffic, waste disposal etc. The probability of an accident occurring at the project site during the phases of the development is **High**. This is due to the intense use of machinery and other heavy-duty equipment used especially in the construction phase. Work related incidents and accidents resulting from trips, falls, object at height during construction activities are likely to occur. Fire and explosions may be described as technological hazards, which can cause serious injury or result in loss of lives and damage to properties and the environment. Flammable substances including diesel and motor oil may be stored or used on the project site for heavy-duty equipment. These substances are precursors for fires and explosions. Envisaged impacts from accidental explosions resulting in fire have been ranked with a **High** significance level. Implementation of the mitigation measures is likely to reduce the impact to a **Minor** level.

8.8 Impacts and Mitigation Measures During Operation Phase

8.8.1 Impact on Ambient Noise Level

The assessment of the potential impacts on **Ambient Noise level**, sources, rating criteria and mitigation measures are presented in Table 8.30.

Table 8.30: Impacts on Ambient Noise Level

Impact	Sources of	Mitigation Measures	Impact on Ambient Noise level			
Statement	Impact	Integrated in Project				
		Design				
NQ 3: Increase	RoW maintenance	TCN shall install mesh at	Impact criteria Rating			
in ambient		sensitive receptor locations	Legislature 3			
Noise level	Corona Effect		Stakeholder concern 1			
			Severity 1			
			Scale 1			
			Frequency 5			
			Overall rating 30			
			Impact Significance Medium			
Mitigation measures						
TCN shall avoid overloading the transmission lines						
TCN shall install mesh at sensitive receptor locations						
Residual Impact						
Low						

NQ 3: Noise during the operation phase, maintenance activities conducted near pylons, transmission line or RoW could lead to an increase in noise levels which may disturb neighboring communities. However, these disturbances will be temporary since they will be felt only during maintenance activities.

Noise produced by transmission lines, can be experienced as a buzz or a crackle, and noise produced by substations comes mainly from power transformers. In general, noise produced by substations is higher than that produced by transmission lines.

The audible noise emitted from high-voltage lines is caused by the discharge of energy that occurs when the electrical field strength on the conductor surface is greater than the 'breakdown strength' (the field intensity necessary to start a flow of electric current) of the air surrounding the conductor. This discharge is also responsible for radio noise, a visible glow of light near the conductor, an energy loss known as corona loss and other phenomena associated with high-voltage lines.

The degree or intensity of the corona discharge and the resulting audible noise are affected by the transmission voltage and weather conditions such as humidity, air density, wind, rain, drizzle and harmattan. Water increases the conductivity of the air and so increases the intensity of the discharge. Also, irregularities on the conductor surface, such as nicks or sharp points and airborne contaminants, can increase the corona activity. The higher the voltages at which transmission lines operate, the higher the noise problem. Also, noise may be especially noticeable during nighttime hours when ambient noise levels are lower.

Consequently, these lines are designed, constructed and maintained so that during dry conditions they will operate below the corona-inception voltage, meaning that the line will generate a minimum of corona-related noise.

Communities likely to be affected are mainly those where the line passes through residential areas.

Overall, noise-related impacts during the operation phase is ranked medium, with implementation of mitigation measures, impacts on noise shall reduce to Negligible Status.

8.8.2 Impact on Soil and Geology

The Assessment of the potential impacts on **Soil and Geology**, sources, rating criteria and mitigation measures are presented in Table 8.31.

Impact Statement	Sources	Mitigation Measures	Impact on S	oil and
	of Impact	Integrated in Project Design	Geology	during
			Operation	
SQ3 (A): Potential	Maintenan	Appropriate flow diversion and	Impact criteria	Rating
contamination of soil from	ce of RoW	erosion control structures i.e.	Legislature	3
inadvertent release of		earth embankments shall be put	Stakeholder	1
hazardous or contaminating		in place where soil may be	concern	
material (liquid fuel, solvents,		exposed to high levels of erosion	Severity	3
lubricants, aluminum oxide		due to steep slopes, soil structure	Scale	1
paint, etc.		etc.	frequency	2
			Overall rating	16

Table 8.31:	Impacts on Soil and	l Geology
-------------	---------------------	-----------

				Impact	Low
				Significance	
Mitigation measures					
Appropriate flow diversio	n and erosior	control structures	i.e. earth embar	kments shall be	put in place
where soil may be expos	ed to high lev	els of erosion due t	o steep slopes,	soil structure etc	;
Ensure safe operating pr	actices are e	nforced during TL m	aintenance		
 Implementation of project 	t specific spill	and Emergency Re	esponse Plan		
 Ensure hydrocarbon/choice 	emical spill	containment and	prevention mea	asures and equ	uipment are
functional and effective c	on site and for	equipment and veh	nicles		
Double handling to be avoided where possible					
 When transfer has to take 	• When transfer has to take place, ensure it is done in lined and secured areas where containment is			ntainment is	
possible	possible				
 Educate personnel or 	hydrocarb	on and chemical	handling ris	ks/hazards, thi	ough SHE
briefings/toolbox meeting	js				
Residual Impact					
Negligible					

SQ3 (B): During the operation phase, oil leaks resulting from equipment breakdown and/or accidental spills from machinery used for maintenance purposes could lead to soil contamination. As during the construction phase, the risk of soil contamination due to leaks and/or accidental spills cannot be completely discarded. This impact has been ranked Low. However, the application of management measures listed above will help reduce this risk significantly to a **Negligible** status.

8.8.3 Impact on Socio-economic

The Assessment of the potential impacts on **Socio-economic**, sources, rating criteria and mitigation measures are presented in Table 8.32.

Table 8.32:	Impacts on	Socio-econ	omic
-------------	------------	------------	------

Impact Statement	Sources of	Mitigation Measures	Impact on Socio-	economic	
	Impact	Integrated in Project Design			
SE3 (A): Effectively	Electric	Impact is beneficial and shall be	Impact criteria	Rating	
evacuate power to be	power	enhanced by sustaining the	Legislature		
generated for further	transmissio	transmission line life span,	Stakeholder		
distribution within the	n	through adequate and effective	concern		
national grid.	using the	maintenance activities as well	Severity		
	installed	as complying with federal	Scale		
SE3 (B): Development	lines after	government's policies and laws	frequency		
of new infrastructures	commission	on power transmission and	Overall rating		
or improvement to	ing	distribution	Impact	Beneficial	
existing ones.			Significance		
Mitigation measures					
Impact is beneficial and	shall be enhan	ced by sustaining the transmission	line life span, throug	h adequate	
and effective					
maintenance activities as well as complying with federal government's policies and laws on power					
transmission and distribution					
Residual Impact					
Beneficial					

SE3 (A): SE3 (B): The improved electricity supply in the area will result in the improvement of social services infrastructure in the area as well as reduced cost of providing these services. These include water supply, schools, telecommunications, etc. that would have otherwise relied on private power generating plants. Furthermore, the existing access roads upgraded during construction will now be available for use by the communities.

Hence, the impact on infrastructure during operation and maintenance is Beneficial

The Assessment of the potential impacts on **RoW encroachment**, sources, rating criteria and mitigation measures are presented in Table 8.33.

Table 8.33:	Impacts on RoW Encroachment
-------------	-----------------------------

Impact	Sources of	Mitigation Measures	Impact on	RoW
Statement	Impact	Integrated in Project Design	Encroachment	
SE3 (C):	Electric power	consultations, sensitize	Impact criteria	Rating
Unchecked	Transmission	stakeholders and members	Legislature	3
encroachment on	using the	of the communities on	Stakeholder	2
the RoW, leading	installedlines	government policies along	concern	
to land-use	after	established ROW	Severity	3
conflicts and	commissioning.		Scale	1
accident			frequency	3
			Overall rating	27
			Impact	Medium
			Significance	
Mitigation measure	S	L	I	
Provide wa	arning signs at acces	ss roads to warn against unauthor	ized entry	
Through co	onsultations, sensitiz	e stakeholders and members of t	he communities on	government
policies alo	ong established RoV	V		
• Perimeter sensing of Aba, Onitsha and Owerri section of the line route usung native shrubby				
species				
Residual Impact	Residual Impact			
Low				

SE3 (C): Prior to the operation of the transmission line, unchecked and unauthorized encroachment by locals or individuals into the transmission line RoW may lead to land use conflict and possible accidents. This impact significant is ranked as **Medium** Implementation of the measures in the Table above shall reduce the impact to **Negligible**

8.8.4 Impact on Biodiversity

The Assessment of the potential impacts on **Biodiversity**, sources, rating criteria and mitigation measures are presented in Table 8.34.

Table 8.34:	Impacts on Biodiversity

Impact Statement	Sources of Impact	Mitigation	Impact on Biodiversity
		Measures	
		Integrated in	
		Project Design	
B3 (A): Local fauna	Electric power	Develop policies	Impact criteria Rating
disturbances from	Transmission using the	that prohibiting	Legislature 3
electromagnetic field	installed lines after	hunting by staffs	Stakeholder 2
along the TL RoW	commissioning		concern
B3 (B): Mortality of	Tower inspection		Severity 3
birds, due to collision	and checks		Scale 3
with earth wires on	Line element		frequency 2
towers	replacements		Overall rating 22
			Impact Low
	RoW maintenance		Significance
			I

Mitigation measures

• TCN shall assure during transmission line component testing that national and international standard and limits are met.

- Routine line patrols by TCN maintenance crew to look out for any bird collisions. If any collision "hot spots" are identified, these can be mitigated reactively.
- Disturbance of vegetation during construction and operation should be kept to a minimum.
- Develop policies that prohibiting hunting by staffs

Negligible

B3 (A): The electromagnetic fields emitted from the transmission lines may result in some form of faunal disturbance, i.e. faunal species (invertebrates and small mammals) may choose not to spend prolonged periods under the transmission lines due to the electric magnet fields. In the majority of situations, the faunal species will simple move into the large expanses of nearby similar vegetation. The Impact significance is **Medium** based on the rating criteria. Application of the mitigation measures shall reduce the impact to a **Negligible** status.

B3 (B): The presence of the power line is likely to affect bird communities during the operational phase, especially when located in open air space habitats as grasslands. The presence of the power line can affect birds flying from 50m to 75m mainly through:

- Collision with power lines or towers leading to death or injury. Greater collision risk is associated with the thin ground wire which is located above the thicker high voltage wire
- Electrocution: Due to contact with live components.

Tricholaema hirsute, Dyaphorophyla nigriipennis, Muscicapa comitata were the most abundant bird species found to be flying strictly within this range.

The environmental characteristics and location of the power line can greatly influence collision probabilities. Collision rates between birds and the proposed power line could be highly variable both temporally and spatially. There are many factors that can contribute to specie's vulnerability to collisions with power lines, such as flocking behavior, rapid flight, high wing loading, nocturnal migrants, and species with poor vision. There is no peculiar bird breeding areas/migration routes identified along the line. The impact is low as ranked using the criteria in the Table above.

It is not considered practical to recommend marking all line through open areas to mitigate for bird collisions, as this would be a large proportion of the line, and the risk does not warrant it. Also it will create a negative visual impact on those people living nearby. Instead it is recommended that the routine line patrols by TCN maintenance crew be used to detect any bird collisions. If any collision "hot spots" are identified, these shall be mitigated. If these measures are put in place, overall significance of the potential impact shall be **Negligible**.

8.8.5 Impact on Health, Safety and Security

The Assessment off the potential impacts on **Health, Safety and security**, sources, rating criteria and mitigation measures are presented in Table 8.35.

Table 8.35	Impacts on Health, Safety and security
------------	--

Impact Statement	Sources of	Mitigation Measures	Impact on Health, Safety and				
	Impact	Integrated in Project	security				
		Design					
HS3(A): Health issues	Operation of TL	The towers will be designed	Impact criteria Rating				
from exposure to EMF	Transmission line	according to best practices	Legislature 3				
HS3 (B): Death and	maintenance	and standards	Stakeholder concern 3				
injury from tower			Severity 3				
collapse			Scale 1				
HS3 (C): Electrocution			Frequency 5				
during TL			Overall rating 50				
maintenance			Impact Significance High				
Mitigation measures			· · · · ·				
The towers will be desig	ned according to be	st practices and standards					
Use of appropriate pers	onal protective equi	oment (PPE) e.g. rubber hand	gloves, hard hats, safety boots,				
etc. by all personnel at t	he project site						
pylons will also be constructed with devices that prevent climbing beyond safe heights							
Use trained Staff in TL maintenance							
Residual Impact							
Medium							

The presence of power lines is a potential security risk for the people living nearby due to exposure to EMF. Pylon steel and conductor theft can also pose significant risks in the case of the collapse of the tower.

HS3 (A): Health problems and exposure to the EMF are often raised when a new transmission line is proposed. Based on a recent comprehensive review of the scientific literature (World Health Organization - International EMF Project), the WHO concluded that despite extensive research, there is no evidence to date

that support harmful impacts of exposure to low intensity EMF to human health (WHO 2007, WHO 2002). Based on the impact rating criteria used, this impact is rated **High** and implementation of the mitigation measures shall reduce the impact to **Minor**.

HS3 (B): There exists the possibility of collapse of the transmission line towers which could lead to injury or fatality of affected persons. The severity and scale of the impact is high, but the likelihood is low, hence the impact is rated **Medium**. The line route was selected to avoid dense areas, and implementation of the mitigation measures in the Table above shall reduce the impact to Negligible

8.8.6 Impact on Surface Water Quality

The Assessment of the potential impacts on **Surface water quality**, sources, rating criteria and mitigation measures are presented in Table 8.36.

Impact Statement	Sources of	Mitigation Measures	Impact on Surface water quality				
	Impact	Integrated in Project					
		Design					
WQ3: Surface water	Tower inspection	Appropriate flow diversion	Impact criteria Rating				
pollution.	and checks	and erosion control	Legislature 3				
	Line element	structures i.e. earth	Stakeholder concern 2				
	replacements	embankments shall be put in	Severity 3				
	ROW	place where soil may be	Scale 2				
	maintenance	exposed to high levels of	Frequency 2				
		erosion due to steep slopes,	Overall rating 20				
		soil structure etc	Impact Significance Low				
Mitigation measures							
Appropriate flow diversion and erosion control structures i.e. earth embankments shall be put in place where soil							
may be exposed to high levels of erosion due to steep slopes, soil structure etc.							
Access into the swampy habitats shall be prevented as far as possible. Where access into these areas is required							

Table 8.36: Impacts on Surface water quality

a preferred corridor shall be determined. No deviation from these corridors should be allowed.

Areas to be rehabilitated shall be identified and reclaimed

Residual Impact	
Negligible	

WQ3: Surface water pollution

There is possibility of accidental spillage occurring during TL maintenance in locations where towers are near water bodies. Runoffs may carry the spilled oil into these water bodies and thereby polluting them. This impact is ranked low based on the rating criteria in the above Table. However, the implementation of the mitigation measures in the Table is likely to reduce the impact to a **Negligible** status.

8.9 Impacts and Mitigation Measures During Decommissioning Phase

The decommissioning phase refers to all the activities which relate to the proposed transmission line when it is no longer in use. Potential issues that relate to the decommissioning phase refers to impacts such as the towers lying strewn around, lack of rehabilitation of the access roads, overgrown vegetation along the RoW etc.

During the decommissioning phase, the demolition activities are likely to have similar impacts on the environment as were identified for the construction phase. These include potential impacts such as sedimentation, surface water, visual impact, dust and noise pollution, a risk of fires and explosions, safety and security and traffic impacts etc. Impacts arising from decommissioning activities have been ranked with significance levels of **Low** to **High**

Mitigation measures for impacts during decommissioning will be implemented in line with practices as at the time of decommissioning. However, to a minimum the following mitigation measures have been put in place for impacts arising due to decommissioning process:

Develop and implement a decommissioning plan in line with requirements as at the time of decommissioning. Ensure that excavated and stockpiled soil material is stored and bermed on the higher lying areas along the site and not in any run-off channels where it is likely to cause erosion.

Decommissioning activities should preferably take place during the dry season months to prevent soil erosion caused by heavy rains.

Wet all unprotected cleared areas and stockpiles with water to suppress dust pollution. Institute noise control measures (e.g. regular equipment maintenance) throughout the decommissioning phase for all applicable activities.

Take cognizance of peak traffic times and plan transportation of decommissioned structures and personnel so as to avoid obstruction of local traffic by vehicles, heavy machinery/trucks.

The decommissioning contractor as at the time of decommissioning will have to develop a decommissioning security plan and implement its use.

Ensure effective waste management from cradle to grave for all wastes generated during and after the decommissioning period.

Enforce proper waste management policies in line with FMENV standards and requirements as at time of decommissioning.

Ensure use of road worthy vehicles and equipment as well as skilled operators and drivers Implementation of the above measures reduces the impacts from to negligible

8.10 Cumulative Impacts

8.10.1 Defining Cumulative Impacts

In theory, any development such as the proposed Project may be taking place at the same time as other developments, causing impacts affecting the same resources or receptors, such that the impacts on these resources and receptors from all potential development will be cumulative. According to the Performance Standard, cumulative impacts can be defined as impacts that:

"result from the incremental impact, on areas or resources used or directly impacted by the project, from other existing, planned or reasonably defined developments at the time the risks and impacts identification process is conducted."

Generally, Cumulative Impacts are considered to be impacts that act with impacts from other projects such that:

The sum of the impacts is greater than the parts; or

The sum of the impacts reaches a threshold level such that the impact becomes significant.

The types of cumulative impacts that may be of relevance are detailed below:

Accumulative: the overall effect of different types of impacts at the same location. An example would be fugitive dust emissions, construction noise and construction traffic all impacting the local communities as a nuisance/ disturbance.

Interactive: where two different types of impacts (which may not singly be important) react with each other to create a new impact (that might be important) (e.g. water abstraction from a watercourse might exacerbate the impacts caused by increased sediment loading).

Additive or In-combination: where impacts from the primary activity (i.e. the construction and operation of the Project) are added to impacts from third party activities e.g. other major projects in the vicinity of the Project which are already occurring, planned or may happen in the foreseeable future).

8.10.2 Identification of Relevant Development(s)

The focus of the cumulative impact assessment is on the combination effects of the Project with potential future development in the immediate area around the Project site. Our assessment cumulative impacts regarding the potential project in view, depends on the status of other projects and the level of data available to characterize the magnitude of the impacts.

In view of the paucity of available information regarding such future developments, this assessment follows a generic pattern and focuses on key issues and sensitivities for this project and how these might be influenced by cumulative impacts with a combination of other developments. Consultations with local and state authorities and identification of relevant and significant developments via searches of relevant documents provided invaluable assistant in this assessment. The main developments identified are

- Cumulative impacts from other projects within 5km on either side of the TL
- Those likely to arise from other transmission line projects

The following proposed and existing projects within 5km on either side of the RoW are expected to exert cumulative impacts. They are;

- Okija Onitsha Transmission Line
- Construction of Olokoro Isiala- Oboro- Nnono Junction Road in Abia State
- EPC Of Obiafu/Obrikom to Oben (OB3) Gas Transmission Line
- Rehabilitation of Owerri- Umuahia Road Section I, II, & III Imo/ Abia State.
 However, there are no known transmission project that is ongoing in the project area

8.10.3 Summary of Cumulative Impacts

Air Quality and Noise: Given the findings of impact assessment and the baseline ambient noise quality. it appears unlikely that the cumulative impact on noise will not be significant. With regards to ambient air quality, SO2 levels are very likely to increase since baseline levels are already above regulatory limits. Also, the cumulative impacts from the project area will be localized to immediate environment.

Traffic: The construction phase will require large amounts of material and equipment to be transported to the Project site. It is expected that the ongoing developmental projects listed in cumulative impacts section which will place pressure on the local road network especially during the construction phases of the projects. Given the foregoing, there is increased potential for accidents and disruption to the road traffic network for local users associated with the increase in traffic movements from overlapping construction traffic. It is expected that the traffic management plan to be developed for the project will consider other traffic movements associated with the development of the project in view which will help to mitigate this impact. However, in overall consideration, this impact is considered to be moderate due to the high likelihood of accidents occurring.

Economy, Employment and Skills: The operation of the various considered projects earlier outlined is proposed to occur simultaneously with the project in view. As such, the economic, employment and skills development opportunities will be greater for all the projects combined than a single project.

It should be noted that expectations regarding economic development, employment and skills development will be high amongst stakeholders in the local community and as such, in the event that one project does not meet expectations, there is the potential for all projects within the area to be the target of this negative outcome.

Based on the above, the cumulative impacts of the various proposed industrial projects on the economy, employment opportunities and skills development within the communities is expected to be positive

Geomatics Nigeria

CHAPTER NINE ENVIRONMENTAL AND SOCIAL MANAGEMENT PLAN

9.1 Introduction

This chapter provides the ESMP for the Alaoji-Onitsha Transmission Line Project. Elements of this plan will be taken forward and incorporated into a comprehensive project Environmental and Social Management System (ESMS)that will be used to deliver the Project's HSE regulatory compliance objectives and other related commitments.

This ESMP is a delivery mechanism for environmental and social mitigation and enhancement measures made in the ESIA Report. The ESMP is formulated mainly from the acquired project area - specific environmental and social conditions (baseline). The purpose of the ESMP is to ensure that these recommendations are translated into practical management actions which can be adequately resourced and integrated into the Project phases. The ESMP is, therefore, a management tool used to ensure that undue or reasonably avoidable adverse impacts of initial decommissioning, construction and operation are prevented or reduced and that the positive benefits of the Projects are enhanced (Lochner, 2005).

The ESMP has been developed to meet international standards on environmental and social management performance, specifically those set out by the AfDB environmental and social safeguards guidelines detailed in its Integrated Safeguards Standards (ISS). The ESMP is intended to cover those activities described in Chapter 3 of this EIA report; this includes project activities during construction and operation and will be subject to thorough reviews prior to the commencement of activities to ensure completeness. The ESMP does not include measures for activities related to equipment and facility fabrication being done offsite. It should be noted that this provides the outline requirements for environmental management. Provision will be made for updating the outline ESMP once the detailed project design is complete and for adapting the ESMP to relevant project stages as part of the overall ESMS.

The ESMP details the mitigation and enhancement measures TCN has committed to implement through the life of the Project and includes desired outcomes; performance indicators; targets or acceptance criteria; monitoring and timing for actions and responsibilities. If during the construction and operational phase, impacts are found to be higher than initially predicted, additional mitigation measures will need to be implemented to control, reduce or prevent an impact from occurring. Therefore, the ESMP is dynamic document which will need to be continuously updated and amended as necessary, throughout the project life

cycle, to ensure that any negative impacts from the Project are prevented or reduced and positive ones are enhanced. Any significant changes will need to be discussed with the Federal Ministry of Environment and the AfDB.

9.2 Objectives of the ESMP

The ESMP is needed to successfully manage the project's environmental and social performance throughout its lifecycle. It provides integration of environmental and social management with overall project engineering, procurement, construction, and operations. The ESMP is prepared to achieve the following objectives:

- promote environmental and social management in the project implementation in all phases;
- ensure that all relevant stakeholders are aware of their respective responsibility -promoter, contractors, regulators and other relevant agencies;
- incorporate environmental and social management into project design and operating procedures and activities;
- serve as an action plan for environmental and social management for the project;
- provide a framework for implementing environmental and social commitments (such as mitigation measures identified in the ESIA);
- prepare and maintain records of project environmental and social performance for monitoring and evaluating performance monitoring, audits and non-compliance tracking).

9.3 Institutional Framework for Implementation of the ESMP

Responsibilities in the implementation and monitoring of the ESMP are shared between multiple stakeholders, including regulatory and concerned agencies, the AfDB, AfDB-PIU, the TCN and the contractors. These are represented in Figure 9.1.

Figure 9.1: Institutional Arrangements for the implementation of ESMP of the Alaoji – Onitsha 330kV Transmission Line Project

Figure 9.2 is the organogram for TCN-AfDB PIU.

TCN-AfDB PIU ORGANIZATIONAL STRUCTURE AS AT JULY, 2019

Figure 9.2 TCN-AfDB PIU Organogram

The key roles and responsibilities for the implementation of the ESMP are presented below.

Overall:

- TCN will have principal responsibility for all measures outlined in the ESMP for the construction phase.
- TCN is responsible for the implementation of the measures in the operation phase.
- Both may delegate responsibility to its contractors, where appropriate. In cases where other individuals or organizations have responsibility for mitigation or enhancement measures, this is clearly indicated in Tables 9.1 and 9.2.

• Capacity building and training requirements are also described, where these relate to specific skills required to deliver the ESMP action in question.

Project Implementation Unit (PIU) will manage the project.

The PIU shall hire and manage contractors, a witness NGO shall be accredited to monitor and evaluate the implementation of the RAP and ESMP to a certain extent. EPC contractors are responsible for implementation of the ESMP and an independent consultant responsible for RAP implementation. Overall regulatory agencies at National State and Local Government levels are responsible for the implementation of ESMP.

9.3.1 Project Proponent (TCN)

TCN is the implementation agency for this project. Hence, has the overall responsibility for its success. The PIU for AfDB projects has been established by the TCN Management to handle this responsibility. The PIU is headed by a Project Manager who reports to the General Manager, Programs.

9.3.2 **Project Implementation Unit (PIU)**

The PIU set up by TCN-AfDB is saddled with the responsibility of project implementation. It is headed by a Project Manager. Members of the PIU consist of technical experts and environmental, social as well as two liaison officers shall be appointed drawn from relevant departments of TCN, including HSE, Projects, Lines, procurement, planning, etc.

TCN/PIU is responsible for the overall project planning and execution, including preparation of bidding documents, hiring of project management consultants, EPC contractors and supervision of the works. This approach includes ensure proper implementation of the environmental and social management measures contained in the ESMP, the RAP and their surveillance and monitoring.

In order to provide additional oversight, the project PIU will hire an independent consultant to manage the RAP and ESMP implementation including payment of compensation. The PIU will also invite relevant NGO to monitor and insure effective implementation of the RAP. It shall be responsible for Ensure that the Project's detailed design of the ESMP is based on the final detailed engineering design and ensure that measures to be undertaken during construction and environmental technical specifications are included in the bidding documents and contractual obligations with the winning bidder for each of the contracted elements of the Project.

9.3.3 TCN Environment Division

The Environment Unit of TCN shall be responsible for ensuring implementation of management measures during operation phase (post-commissioning), including audits, compliance monitoring, and preparation of periodic reports required by regulations the operations.

9.3.4 Regulatory Agencies and Other Concerned Authorities

The Federal Ministry of Environment (FMEnv) has the responsibility for the implementation of the EIA Act 86 of 1992. Furthermore, State Ministries for Environment (Abia, Anambra and Imo States) and affected LGAs, Osisioma, Aba North, Aba South, Ugwunagbobo, Ekwusigo, Idemili south, Ihiala, Ogbaru, Owerri municipal, Mbatoli, Ngor–Okpala, Owerri-north, Owerri-west, Oru-east, Oru- west, Njaba have certain oversight roles, which they perform under coordination of the FMEnv.

Responsibilities for the ESIA and its implementation are shared between multiple stakeholders, including concerned ministries, competent authorities, the project implementation unit (PIU), the TCN and the contractors as presented in the Table 9.1.

Concerned ministries	Competent authorities	Project	TCN and the
		implementation unit	contractors
		(PIU),	
• Federal Ministry of	• Federal Government of	AfDB Project	 Transmission
Environment	Nigeria	Implementation Unit	Company of
(FMEnv)	Imo State Environmental	(PIU)	Nigeria
Imo State Ministry	Protection Agency (ISEPA)		Local Government
of Petroleum and	• Imo State Ministry of Health,		Area
Environment	Women Affairs and Social		Representatives
(ISMPEnv)	Development (ISMHWASD)		
Abia State Ministry	Imo State Ministry of Works		
of Environment	(ISMW)		
(ASMEnv)			

Table 9.1: Responsibilities of PIU, TCN and Contractors

 Anambra 	state	 Imo State Ministry of Land 	
Ministry	of	Survey Housing and Urban	
Environment		Planning (ISMLSHUP)	
(AnSMEnv)		 Abia state Ministry of Physical 	
		Planning and Urban	
		Development(renewal)	
		(ASMPPUD)	
		Abia State Environmental	
		Protection Agency (ASEPA)	
		Abia State Ministry of Land	
		Survey and Urban planning	
		(ASMLSUP)	
		 Abia State Ministry of Women 	
		Affairs (ASMWA)	
		Abia State Ministry of	
		Transport (ASMT)	
		Anambra State	
		Environmental Protection	
		Agency (AnSEPA)	
		Anambra State Ministry of	
		Transport (AnSMT)	
		Anambra State Ministry of	
		Lands,survey and Town	
		planning (ASMLST)	
		Local Government Authority	
		(LGA)	
		Village chiefs of affected	
		Communities	

The responsibilities and roles of each of the institutions are discussed below.

The Federal Ministrty of Power and Finance

Section 20 of the constitution of Nigeria makes it an objective of the Nigerian State to improve and protect the air, land, water, forest and wildlife of Nigeria. Sections 33 and 34 which guarantee fundamental human rights to life and human dignity, respectively, can also be linked to the need for a healthy and safe environment to give these rights effect. The executive council of the federation approves all national policies including the National Policy on Environment.

Federal Ministry of Environment

The Federal Ministry of Environment is responsible for the overall environmental policy of the Country. It has the responsibility for ESIA approval and implementation, in accordance with the EIA Act. It has developed certain guidelines and regulations to protect the environment and promote sustainable development. It will monitor the implementation of mitigation measures, when the project commences. And they can issue directives to the project on specific actions related to the environment in the project area. The Ministry normally involves the states and sometimes local governments in this responsibility depending on the specific activity.

Project Implementation Unit

It is a unit established by TCN with responsibility for the end to end delivery of all AfDB funded projects, including planning, feasibility, ESIA and RAP, engineering, procurement and construction (EPC). PIU is headed by a substantive Project Manager. Furthermore, the PIU shall ensure:

- The ESIA and RAP studies are conducted in line with legal requirements as well as requirements of the lender
- Proper implementation of the ESMP
- Supervise the EPC contractor in conjunction with the Owner Engineers in Project Department to ensure implementation of management measures.
- Provision of information on activities and consultations with the PAPs.
- Maintain an inventory of the assets to be resettled and a detailed valuation of the compensations.
- Ensure proper information and participation of PAPs and affected communities.
- Management of compensation payments.

- Monitoring the resettlement work.
- Implementation of community-approved projects financed through the EPC contractors.
- Production of monitoring reports to appropriate government authorities, TCN and the contractor in charge of the line construction and the Lender.

Transmission Company of Nigeria

Transmission Company of Nigeria (TCN) manages the electricity transmission network in the country.

TCN's licensed activities include electricity transmission, system operation and electricity trading. It is responsible for evacuating electric power generated by the electricity generating companies (GenCos) and wheeling it to distribution companies (DisCos). It provides the vital transmission infrastructure between the GenCos and the DisCos' Feeder Substations.

Electricity Distribution Companies (Port Harcourt)

These two electricity distribution companies are part of 13 distribution companies unbundled from defunct PHCN during electricity reform in 2004. They are responsible for distributing electricity to homes and other consumers within the Alaoji - Onitsha Regions. This role makes them the direct customers of TCN and a major stakeholder in ensuring improved electricity supply to consumers and realizing other objectives of this project.

Imo State Ministry of Petroleum and Environment (ISMPEnv)

The Imo State Ministry of Petroleum and Environment is charged with the obligation of developing and implementing environmental policies, formulating, enforcing programs and legislation, environmental protection and control, environmental technology including efficient implementation of research and development.

Abia State Ministry of Physical Planning and Urban Development (Renewal) (AbSMPPUD)

The Bureau's core mandate is to strengthen land administration, acquire, prepare, allocate and register all land transactions as well as the physical planning of non-urban centres in the state. The Bureau Abia state Ministry of Physical Planning and Urban Development (renewal) (AbSMPPUD) has is an agency under the ministry's supervision.

The functions of the Agency include

- Land acquisition
- Compensation
- Land allocation
- Processing of Certificates of Occupancy for production and collection
- Registration of land transaction
- Change of land use purpose
- Merger of land titles
- Renewal of land ownership (Re-grant)
- Conversion of land titles
- Non-urban services (planning recommendation, building plan approval)
- Geographical information services
- Project management of metropolitan and other Urban Roads

Anambra State Environmental Protection Agency (AnSEPA)/ Imo State Environmental Protection Agency (ISEPA)/ Abia State Environmental Protection Agency (ASEPA)

The agencies are responsible for preparing and updating periodic master plans for the development of environmental science and technology and advise the government of the financial and material requirement for the implementation of such plans; to establish a mechanism to predict ecological disasters; identify the problems of drainage and sewage systems and carry out measures to improve, protect and remedy their ecosystems .Also protection and development of the environment, and also ensuring a healthy environment.

Abia State Ministry of Transport (ASMT)/ Anambra State Ministry of Transport (AnSMT)

The major roles of the ministry are;

- To formulate and implement effective policies in respect to road transportation to ensure that adequate road safety measures are put in place across the state.
- To co-ordinate the creation of motor parks, identification and development of railways and river transportation.
- To ensure effective and efficient movement of goods and services that will enhance socio-economic growth throughout the states.

Abia State Ministry of Environment (ASMEnv)

Abia State Ministry of Environment is charged with the obligation of developing and implementing environmental policies, programs and legislation, environmental protection and control, environmental technology including efficient implementation of research and development.

Anambra State Ministry of Environment (AnSMEnv)

Anambra State ministry of environment is charged with the responsibility of formulating, enforcing, coordinating policies, statutory rules and regulation on solid waste collection, disposal, general environmental protection and flood control in the state. To also ensure the attainment if a clean, beautiful and sustainable environment across the state through the application of the best practices in the management of the environment, to initiate, implement and monitor all issues relating to climate change in order to mitigate the negative impact of climate.

Abia State Ministry of Women Affairs (ASMWA)/ Imo State Ministry of Health, Women Affairs and Social Development (ISMHWASD)

The responsibilities of the Ministries in both states are majorly to facilitate efforts in providing micro credits to the indigent women from donor agencies (UNICEF, UNFPA) strengthen the capacity of caregivers, OVC, NCOS, and CSO sensitize Abia women on the issues of child rights, HIV/AIDS, harmful traditional practices initiate programs that promote the economic empowerment of women provide decent health care delivery, in reducing maternal mortality and morbidity by collaborating with the ministry of health and also strengthen the child's parliament through seminars exchange programmes, debates, radio/TV shows.

Anambra state Ministry of Lands, Survey and Town planning (AnSMLST)/ Imo State Ministry of Land Survey Housing and Urban Planning (ISMLSHUP)

The Ministry of these states is vested with the authority of land administration. They are also charged with the survey of state lands, determination of land use and control, compensations, housing policies and urban development. The ministry is also responsible for the supervision of the PIU, mapping and surveying, registration of title to lands, development and maintenance of open spaces.

Local Government Areas (LGAs)

The project will pass through sixteen LGAs, four in Abia State – Osisioma, Aba North, Aba South, Ugwunagbobo, four in Anambra State- Ekwusigo, Idemili south, Ihiala, Ogbaru and eight in Imo State- Owerri municipal, Mbatoli, Ngor–Okpala, Owerri-north, Owerri-west, Oru-east, Oru- west and Njaba. These LGAs are involved in the ESIA approval process. According to the EIA Act, the LGAs will have representatives in the panel that will review the report and advise the Minister to make decisions on the project. The LGAs also have roles in the administration of lands in rural areas and hence, will be involved in the resettlement process.

The Customary District Councils

The line route will pass through the Chiefdoms and several villages under them. The Igwe's (traditional head of chiefdom) have important role to play in the project with respect to mobilization of the community members to support the project, grievance redress, peace and security of personnel, equipment and facilities to be installed. Close contact and regular consultation shall be maintained with customary chiefs throughout the life of the project.

Table 9.2 presents Responsibilities for implementation and monitoring of mitigation measure during initial decommission and construction phase.

Table 9.2: Responsibilities for Implementation and Monitoring of Mitigation Measure During Initial Decommission and Construction Phase

			pre-		post-	Responsibilities		
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
	Localized				Negligibl	EPC	AfDB-	FMENV,
	impairment of air	Affected		Use good international practice:	е	Contract	PIU	ISMPEnv,
	quality by exhaust	influence		Maintain and operate all vehicles and		or		ASMEnv and
	emissions from		Minor	equipment engines in accordance with				AnSMEnv
	vehicles and			manufacturers recommendations				
	equipment engines			Stationary generators to be located to facilitate				
	(SO2, CO, NOx,			dispersion				
Air quality	CO2, PM)							
	Elevated dusted	Affected communiti es in area of influence		 Use good international practice: Cover properly loose materials and keep top 	Negligibl	EPC	AfDB -	FMENV,
	levels in nearby				е	Contract	PIU	ISMPEnv,
	communities as a					or		ASMEnv and
	result of dust raised		minor	a liss hinder material for crossion and dust				AnSMEnv
	by vehicle			Ose billuer material for erosion and dust control for long term expected surfaces				
	movements, wind,			Degular elegening of equipment drains and				
	and handling of			Regular cleaning or equipment, drains and				
	dusty material			roads to avoid excessive buildup of dift				

			pre-		post-	Responsibilities		
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
				Spray surfaces prior to excavation				
				Use covered trucks for the transportation of				
				materials that release dust emissions				
				 Speed limits on-site of 15kph on 				
				unhardened roads and surfaces				
				Maintain and operate all vehicles and	Minor	EPC	AfDB -	FMENV,
				equipment engines in accordance with		Contract	PIU	ISMPEnv,
Olimata	GHG emissions that	Clahal		manufacturers specifications, location of		or		ASMEnv and
climate	could add to climate	Global	Minor	stationary generators to facilitate dispersion,				AnSMEnv
change	change effects	warming		restriction of vegetation clearing to only the				
				required area				
				Limit clearing during access road widening				
Noiso	Nuisanco noiso from	Affected		Lise good international practice:	Minor	EPC	AfDB -	FMENV,
vibration 8		Allecieu	Moderat	Develop a datailed plan that relates to paise		Contract	PIU	ISMPEnv,
			е	• Develop a detailed plan that relates to holse		or		ASMEnv and
	activities	les in area		control for relevant work practices and discuss				AnSMEnv

			pre-		post-	Respons	ibilities	
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
		of		this with construction staff during health & safety				
		influence		briefings				
				Select 'low noise' equipment or methods of work				
		Constructi		 Use temporary noise barriers for equipment (e.g. 				
		on workers		sound proofing walls around stationary power				
				generating sources).				
				 Avoid dropping materials from height, where 				
				practicable				
				 Avoid metal-to-metal contact on equipment 				
				 Maintain and operate all vehicles and equipment's 				
				in accordance with manufacturers				
				recommendations				
				 Avoid mobile plant clustering near residences and 				
				other sensitive land uses				
				 Ensure periods of respite are provided in the case 				
				of unavoidable maximum noise level events				

			pre-		post-	Responsibilities			
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring	
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on		
			Significa		Significa				
			nce		nce				
				 Inform all potentially impacted residents of the 					
				nature of works to be carried out; the expected					
				noise levels and duration, as well as providing the					
				contact details of the CLO.					
				Noisy activities (activities that can be heard in					
				nearby communities) restricted to day-time					
				working hours					
	-Change to soil	Soil on			Minor	EPC	AfDB -	FMENV,	
	structure (erosion	constructio		 Construction of foundations to be undertaken in 		Contract	PIU	ISMPEnv,	
	and compaction) as	n site		the dry season.		or		ASMEnv and	
Soils,	a result of excavation			Backfill foundation pits by the excavated soils				AnSMEnv	
geology	and backfilling and		Moderat	which will resemble the order of the original soil				ASMLST,ISM	
and land-	removal of		е	layers.				LSHUP,ASML	
use	vegetation (at the			 Protect excavated soil materials from erosion. 				SUP	
	tower foundation pits			• Ensure that the land is physically restored					
	and possibly parts of			(include revegetation where possible) before					
	the access roads)								

			pre-		post-	Respons	ibilities	
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
				leaving to next tower location and before the next				
				rainy season.				
				• Use of existing track for transport of man and				
				material to the extent possible.				
				• The metallic structures should be protected				
				against corrosion. Also, where the subsoil is				
				clayey and incompetent, transmission line tower				
				foundation should be anchored on friction piles to				
				prevent settlement.				
	Potential	Soil on		Use good international practice:	Negligibl	EPC	AfDB -	FMENV,
	contamination of soil	constructio		 Use good international practice. Implement offective site drainage on the 	е	Contract	PIU	ISMPEnv,
	from inadvertent	n site,	Moderat	 Implement enecuve site drainage on the construction yard to allow for the directed flow of 		or		ASMEnv and
	release of hazardous	especially		surface water off site. This shall include out off				AnSMEnv
	or contaminating	by	C	drains to divort surface runoff from expected soils				
	material (liquid fuel,	constructio						
	solvents, lubricants,	n camp						

			pre-		post-	Respons	Responsibilities		
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring	
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on		
			Significa		Significa				
			nce		nce				
	aluminum oxide	and each		 Install oil/water separators and silt traps before 					
	paint, etc.)	tower		effluent, leaves the site.					
				 Minimize bare ground and stockpiles to avoid silt 		EPC	AfDB -	FMENV,	
				runoff.		Contract	PIU	ISMPEnv,	
				 Bunding of areas where hazardous substances 		or		ASMEnv a	and
				are stored (e.g. fuel, waste areas).				AnSMEnv	
				 Remove all water accumulation within bunds using 					
				manually controlled positive lift pumps not gravity					
				drains.					
				 Regular checking and maintenance of all plant and 					
				equipment to minimize the risk of fuel or lubricant					
				leakages.					
				 Training of relevant staff in safe storage and 					
				handling practices, and rapid spill response and					
				clean-up techniques.					

			pre-		post-	Responsibilities			
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring	
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on		
			Significa		Significa				
			nce		nce				
				 Set-up and apply procedure regarding dealing with 					
				contaminated soils.					
				 Development and implementation of a Waste 					
				Management Plan (as part of the ESMP) to ensure					
				that waste is disposed of correctly.					
				 Spread sheet underneath the tower structure prior 					
				to start any painting activity.					
	Potential surface an	d			Negligibl	EPC	AfDB -	FMENV,	
	groundwater	local			е	Contract	PIU	ISMPEnv,	
	contamination from	aroundwat	Moderat	See above measures to mitigate 'Potential		or		ASMEnv a	and
	accidental spills an	d er-well and		contamination of soil' impact				AnSMEnv	
Water	improper disposal o	f hore hole	Ŭ						
resources	waste an	d							
	wastewater								
	Exploitation of wate	r Rivers and		Rivers and streams shall not be dammed for the	Negligibl	EPC	AfDB -	FMENV,	
	resources (e.	. streams	Minor	nurnose of water abstraction	е	Contract	PIU	ISMPEnv,	
	casting	fcrossed				or			

			pre-		post-	Respons	ibilities	
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
	foundations) sourced							ASMEnv and
	from nearby water							AnSMEnv
	bodies through tanks							
	Vegetation loss and	Flora and		Promote the use of existing access roads for	minor	EPC	AfDB -	FMENV,
	disturbance to	fauna and		machinery and vehicle mayaments		Contract	PIU	ISMPEnv,
	habitats, fauna and	habitat in	Major	- Dramate the use of existing reads for transporting		or		ASMEnvand
	flora by construction	the area of		 Promote the use of existing roads for transporting 				AnSMEnv
	activities	influence		in order to reduce the project's footprint and				
Terrestrial	Vegetation clearing			minimize the need for new access reads	Negligibl	EPC	AfDB -	FMENV,
ecology	will cause habitat			Infinitize the free for the wood for vegetation	е	Contract	PIU	ISMPEnv,
	disturbances that			Herbicides should not be used for vegetation		or		ASMEnv and
	could create suitable		Minor					AnSMEnv
	conditions for			Re-vegetation should use species locally native to				
	invasive species to			the site and not use any environmental weeds for				
	spread			erosion control				

		ł	pre-		post-	Responsibilities		
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
				 Implementation of the invasive species 				
				management plan as part of the Vegetation				
				Management Plan presented in Chapter 7.				
				 A monitoring program of invasive species 				
				propagation within the right-of-way should be				
				instituted and, if present, must be removed.				
				 Monitoring of invasive species in collaboration with 				
				ASMEnv, ISMPEnv, and AnSMEnv				
	Loss of species that				Minor	EPC	AfDB -	FMENV,
			minor	Clearance activities to be restricted to the minimum		Contract	PIU	ISMPEnv,
	Services			required area.		or		ASMEnv and
	Oel Vices							AnSMEnv
		Rivere/stro		 Natural flow of a River shall not be blocked 	minor	EPC	AfDB -	FMENV,
Aquatic	Loss/disturbance of	ame	moderat	 Conduct activities during the dry season to 		Contract	PIU	ISMPEnv,
ecology	aquatic species	anno	е	minimize disturbance of sensitive shoreline and		or		ASMEnv and
		002260		wetland areas				AnSMEnv

			pre-		post-	Respons	ibilities	
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
				 Adjust pylon siting to span rivers and wetlands 				
				areas, or limit equipment access in wetlands,				
				wherever possible.				
				 Perform all vegetation clearing work manually 				
				along streams/rivers and swamps.				
				 Avoid vegetation clearing along stream shores 				
				and on steep slopes.				
				 Based on an appropriate project design, avoid 				
				erecting towers within wetlands. If unavoidable,				
				select the most optimized site for each tower				
				considering human uses and areas of higher				
				ecological integrity.				
				 Maintain vegetated buffer zones within and 				
				around wetlands and along both sides of				
				watercourse crossings. Restore as soon as				

			pre-		post-	Respons	ibilities	
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
				possible any disturbed areas in the riparian buffer				
				zone.				
				 Avoid equipment and vehicle movements in 				
				rivers, floodplains and wetland areas. I	:			
				unavoidable, reduce access to a minimum length				
				in wetlands and floodplains and select the mos				
				optimized site for the access considering humar				
				uses and areas of higher ecological integrity				
					Negligibl	EPC	AfDB -	FMENV,
	of an active	People			е	Contract	PIU	ISMPEnv,
Visual	construction site with	living close		 Maintain construction site in orderly condition and 		or		ASMEnv and
omonition	storage of materials	to the	Minor	do not distribute material over many sites before	ļ			AnSMEnv
amennues	and aquipment	constructio		usage.				ASMLST,
	within the DeW	n sites.						ISMLSHUP,
								ASMLSUP

		pre-		ore-		Responsibilities		
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
	Change in land use			 Site clearance activities to be restricted to the 	Minor	EPC	AfDB -	FMENV,
	cause by land take			minimum required area.		Contract	PIU	ISMPEnv,
Land	for towers,	Land on	Moderat	 Provision of predefined route, barriers or 		or		ASMEnv and
planning	vegetation	the RoW	е	boundary markings to prevent incursion of				AnSMEnv
and use	clearance, and			machinery and workers into neighboring areas				ASMLST,
	access restriction			 See below measures under 'Resettlement' 				ISMLSHUP,
								ASMLSUP
Stakehold	Management of				Moderat	EPC	AfDB -	FMENV,
er and	Community				е	Contract	PIU	ISMPEnv,
Communit	concerns linked to	Affected		 Follow mitigation for construction phase air 		or		ASMEnv and
Communit.	impacts associated	oommuniti		quality poise and traffic				AnSMEnv
y ovpostatio	with construction		Moderat	quality, hoise and trainc.				ISEPA,
	phase issues (like air	es ill alea	е					ASEPA and
n/	and dust emissions,	OI						AnSEPA
Manageme	traffic, influx and	iniluence		 Inform communities about details of construction 		EPC	AfDB -	FMENV,
ivianagem	community			activities (e.g., employment opportunities,		Contract	PIU	ISMPEnv,
ent	safety/security,			schedule, timing of noise activities, traffic		or		

			pre		pre-		post-	Responsibilities			
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring			
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on				
			Significa		Significa						
			nce		nce						
	noise/vibration, etc.)			including movements of oversized loads) by				ASMEnv a	ind		
	and adverse	1		billboards, posters and community meeting				AnSMEnv			
	impact/inconvenienci					EPC	AfDB -	FMENV,			
	es resulting from it.			 Set-up and effectively monitor construction 		Contract	PIU	ISMPEnv,			
				grievance mechanism		or		ASMEnv a	and		
	In addition, dealing							AnSMEnv			
	with					EPC	AfDB -	FMENV,			
	community/stakehol			• Sharing of independent monitoring reports of all		Contract	PIU	ISMPEnv,			
	der perceptions					or		ASMEnv a	and		
	around cumulative			mentioned in this ESMP.				AnSMEnv			
	impacts linked to the					EPC	AfDB -	FMENV,			
	new plant and			 Engage communities in the monitoring activities 		Contract	PIU	ISMPEnv,			
	transmission lines			to enhance transparency and involvement.		or		ASMEnv a	and		
	operations							AnSMEnv			
	Management of	:		 Enhance ongoing consultations with local 		EPC	AfDB -	FMENV,			
	legacy issues on			communities (with good representation) by TCN		Contract	PIU	ISMPEnv,			
	account of	:		to create continuous dialogue, trust and planning		or					

			pre-		post-	Respons	Responsibilities		
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring	J
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on		
			Significa		Significa				
			nce		nce				
	environmental			of community development activities. Coor	dinate			ASMEnv	and
	pollution from			Stakeholder Engagement of all partne	rs of			AnSMEnv	
	stakeholder			industrial site, prepare and imple	ement				
	concerns around			Stakeholder Engagement Plan					
	existing transmission			 Ongoing reporting to stakeholders on the c 	overall	EPC	AfDB -	FMENV,	
	lines.			environmental performance of the plant ar	nd the	Contract	PIU	ISMPEnv,	
				steps taken to mitigate any ac	verse	or		ASMEnv	and
				environmental impacts.				AnSMEnv	
				 Implement a TMP including design of a 	ccess Negligibl	EPC	AfDB -	FMENV,	
Communit	Increased risks of	People		point, signalization, speed limits, traini	ng of e	Contract	PIU	ISMPEnv,	
y Health,		living close		drivers, use of traffic guards, procedure	es for	or		ASMEnv	and
Safety	linaidanta an publia	to access	Minor	transport of oversized loads (e.g., eng	ines),			AnSMEnv	
and		roads and		maintain log of traffic related inci	dents,			ASMT	and
Security	IUdus	road users		sensitization of road users and people living	close			AnSMT	
				to the construction site.					

			pre-		post-	Respons	ibilities	
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
				 A Local Content Plan should be prepared to 	Minor			FMENV,
	Temporary influx of			facilitate involvement of local labour. See HR				ISMPEnv,
	outside workers in			policies and procedures below.				ASMEnv and
	the communities,	Affected		 No hiring of short-term labor to be made at the 				AnSMEnv
	risking tensions	Allected		site gate.				
	between outside		Minor	 Develop a Code of Conduct for workers. All 		EPC	AfDB -	FMENV,
	(partly possibly	es in alea		workers to receive training on community		Contract	PIU	ISMPEnv,
	expatriate) labour	influence		relations and code of behavior.		or		ASMEnv and
	and local population,	IIIIuerice						AnSMEnv
	due to differences in			 Periodic refreshing as needed based on 				
	wealth and culture.			community liaison/grievance mechanism				
				feedback.				
	Potential for increase	Affected			Negligibl	EPC	AfDB -	FMENV,
	in prevalence of		Minor	 Provide STD awareness material to all workers. 	е	Contract	PIU	ISMPEnv,
	sexually transmitted			Provide condoms to workers.		or		ASMEnv and
	diseases in local							AnSMEnv

			pre-		post-	Responsibilities		
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
	communities and	of						
	other diseases	influence						
					Minor	EPC	AfDB -	FMENV,
	Households living in	Affected				Contract	PIU	ISMPEnv,
Posottion	the RoW need to be	nroportios		 Follow principles and procedures of Resettlement 		or		ASMEnv and
ont	relocated and assets	properties	Major	Action Plan (RAP), including way forward, micro-				AnSMEnv
ent	in the RoW will be	livelihood		plans per affected household.				ASMLST,
	lost	IIVeillioou						ISMLSHUP,
								ASMLSUP
				 Develop transparent human resources policies 	Negligibl	EPC	AfDB -	FMENV,
Labour				and procedures for recruitment process, working	е	Contract	PIU	ISMPEnv,
and	Explaitation of	Labour		conditions and Terms of Employment wages,		or		ASMEnv and
anu		force	Minor	worker-employer relations, Grievance				AnSMEnv
working	workers	lorce		Mechanism, non-discrimination, monitoring, roles				
conditions				and responsibilities following Nigerian Labour				
				Law and ILO conventions.				

			pre-	p		Respons	ibilities	
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
				 Provide reasonable, and if applicable negotiated, 				
				working terms and conditions.				
				 Establish worker's grievance mechanism, so that 				
				potential conflicts can be dealt with in an early and				
				proper way.				
				 No use of child labourers (workers under age 18) 				
				or forced labour.				
				 Provisions to ensure compliance with labour 				
				standards by supply chain and subcontracts,				
				including training if required.				
				 Provide proper work place facilities for 				
				water/sanitation/rest rooms.				
				 If case of retrenchment needs first viable 				
				alternatives are analyzed and then adverse				
				impacts of retrenchment on workers are reduced				

			pre-		post-	Respons			
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring	
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on		
			Significa		Significa				
			nce		nce				
				as much as possible. A transparent retrenchment					
				plan will be prepared.					
				A worker's grievance mechanism will be in place.					
		All staff		Males accurity plan and an annual second second	Negligibl	EPC	AfDB -	FMENV,	
	Activities and staff at	working at		Make security plan and emergency response and	е	Contract	PIU	ISMPEnv,	
	site may create	the	Minor	contacts with security forces. Coordinate in		or		ASMEnv a	and
	security risks	constructio		applicable with TCN security measures for their	•			AnSMEnv	
		n site		site.					
	Risk of health &			- Dovelon project apositio health and sefet	Minor	EPC	AfDB -	FMENV,	
	safety incidents			 Develop project specific field in and salety procedures based on Wärtsilä's standard bealth 		Contract	PIU	ISMPEnv,	
	amongst labour	Constructi		and safety procedures, including provisions for		or		ASMEnv a	and
	force, including		Moderat	training and cortifications to be followed by all				AnSMEnv	
	minor incident's such	force	е	workers including subcontractors. Especially din					
	as cuts and major			trip and fall bazards with towar araction and					
	incidents such as								
	loss of life								

			pre-			post-	Responsibilities		
			mitigatio			mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Μ	litigation or enhancement measures	n	n Action	on	
			Significa			Significa			
			nce			nce			
		Local		•	Prepare a local content plan to enhance ability to	Positive	EPC	AfDB -	FMENV,
	Creation of	residents			locate local hires and Nigerian nationals. Include		Contract	PIU	ISMPEnv,
	temporary jobs for	of affected			provisions for hiring women and youth and for		or		ASMEnv and
1	local residents and	communiti	Positive		"equal pay for work of equal value".				AnSMEnv
	Nigerian nationals	es and		•	A local hiring office (or offices) to be set-up for use				ISMHWASD
Emanda	with skilled trades	Nigerian			by all contractors to advertise positions, receive				and ASMWA
ent and		nationals			applications, and provide guidance to applicants.				
economy	Supply chain			•	Prepare a local content plan to facilitate	Positive	EPC	AfDB -	FMENV,
economy	opportunities for	Nigorian			identification and selection of qualified local and		Contract	PIU	ISMPEnv,
	Nigerian companies				Nigerian companies to provide needed supplies		or		ASMEnv and
	that can provide	and local	Positive		and services. Include provisions for advance				AnSMEnv
Ę	goods and services				notice to local companies, along with selection				
	needed by the	SIVIE5			criteria including health and safety, to allow them				
	company				to prepare for upcoming opportunities.				

			pre-		post-	Responsibilities			
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring	
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on		
			Significa		Significa				
			nce		nce				
	Influx of outside			Coordinate with modical posts and omorganov	Negligibl	EPC	AfDB -	FMENV,	
	workers may pose			sonvices to property for water supply waste	е	Contract	PIU	ISMPEnv,	
	additional pressure	Affected		services to prepare for water supply, waste		or		ASMEnv ar	nd
Infractruct	on social	communiti		management and incidents.				AnSMEnv	
liniastruct	infrastructure, like	es in area	Minor	leatell menon and independent facilities at		EPC	AfDB -	FMENV,	
n	medical posts,	of		 Install proper and independent facilities at 		Contract	PIU	ISMPEnv,	
	emergency services,	influence		construction site for water supply, sanitation, solid		or		ASMEnv ar	nd
	water supply, solid			and liquid waste, so that pressure on community				AnSMEnv	
	waste management			intrastructure is limited.					
	shrines are located				Negligibl	EPC	AfDB -	FMENV,	
	within the RoW along	Affected		- Depart passible shange finds to Appropriate	е	Contract	PIU	ISMPEnv,	
	the transmission line	communiti	Minor	Report possible change inds to Appropriate		or		ASMEnv ar	nd
Cultural	and need to be	es-		authorities				AnSMEnv	
heritage	relocated.								
	Potential interactions	Affected		 Consult with local communities on festivals and 	Negligibl	EPC	AfDB -	FMENV,	
	between		Minor	potentials for interaction with construction works.	е	Contract	PIU	ISMPEnv,	
	construction works	Communiti		If required cease works on the specific dates.		or			

			pre-		post-	Respons	ibilities	
			mitigatio		mitigatio	Mitigatio	Supervisi	Monitoring
Indicator	Potential impact	Receptor	n	Mitigation or enhancement measures	n	n Action	on	
			Significa		Significa			
			nce		nce			
	and cultural festivals	es along						ASMEnv and
	due to traffic, noise	the RoW						AnSMEnv
	and/or vibration							
	impacts							

Table 9.3: Responsibilities for Implementation and Monitoring of Mitigation Measure (OperationPhase)

			Significan		Significa	Responsibilities			
Indicator	Potential impact	Receptor	ce (pre- mitigation)	Mitigation or enhancement measures	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng	
Noise,	Noise & EMF from	Affected	Minor	Noise generation is	Minor	TCN		FMENV	
vibration &	overhead line due to	communit		unavoidable.		Line		,	
EMF	Corona effect and EMF	ies along		Avoiding over		Operati		ISMPE	
	effect	the RoW		loading		ons		nv,	
				Transmission Lines				ASMEn	
				Installation of mesh				v and	
				at strategic places				AnSME	
								nv	
Soils, geology	Potential contamination	Soil along	Negligible	NA	Negligib				
and land-use	of soil from inadvertent	RoW of			le				
	release of hazardous or	TL and							
	contaminating material	access							
		roads							
Water	Contamination of	Affected	Negligible	NA	Negligib		AfDB -		
resources	surface water	communit			le		PIU		
		ies in area							
		of							
		influence,							
		RoW							
Terrestrial	Avian collision	Tricholae	Moderate	"Bird diverters" on	Minor	EPC	AfDB -	FMENV	
ecology		та		the top (ground) wire		Contra	PIU	,	
		hirsute,		to make the lines		ctor		ISMPE	
		Dyaphoro		more visible to birds				nv,	
		phyla		shall be installed.				ASMEn	
		nigriipenn		Installation on both				v and	

	Potential impact R		Significan	ן ו		Significa	Responsibilities			
Indicator		Receptor	ce (pre- mitigation)	Mitigation enhancement measures	or	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng	
		is,		earth wires in	n a				AnSME	
		Muscicap		staggered patterr	n				nv	
		а		Installation only	on					
		comitata		the middle lo	ower					
				60% of the span						
				Installation at 10	0 m					
				intervals on e	each					
				earth wire						
	Loss of vegetation due to	Flora and	Negligible	NA		Negligib		AfDB -		
	routine clearance of	fauna				le		PIU		
	vegetation	within the								
		RoW								
Aquatic	Degradation of aquatic	River	minor	Natural w	ater	Negligib	TCN	AfDB -	FMENV	
ecology	species due to	crossings		courses shall no	t be	le	Line	PIU	,	
	construction activities	along the		obstructed.			Operati		ISMPE	
	around surface water	RoW		Wastes shall not	t be		ons		nv,	
	bodies			disposed al	long				ASMEn	
				water courses	or				v and	
				sensitive areas.					AnSME	
				Existing acc	cess				nv	
				roads shall	be					
				utilized du	ıring					
				maintenance of	the					
				RoW.						
				Avoid equipment	and					
				vehicle moveme	ents					

			Significan		Significa	Responsibilities			
Indicator	Potential impact	Receptor	ce (pre- mitigation)	Mitigation or enhancement measures	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng	
				in rivers, floodplains					
				and wetland areas.					
Visual	Transmission lines and		Minor	The RoW does not	Negligib	TCN	AfDB -	FMENV	
amenities	towers will be visible	Affected		affect forests or	le	Line	PIU	,	
	from far and become an	communit		valuable landscapes.		Operati		ISMPE	
	extrinsic element in the	ies in the		Vegetation will be		ons		nv,	
	landscape. Cumulative	area of		felled, but if possible,				ASMEn	
	with the other	influence		smaller trees can be				vand	
	Transmission lines this			kept.				AnSME	
	may result in a loss of the			Towers have an				nv	
	visual amenity.			open structure, not					
				hampering the view					
				very much.					
Stakeholder	Management of	Affected	Moderate	Follow mitigation for	Minor	TCN	AfDB -	FMENV	
and	Community concerns	communit		operation phase air		Line	PIU	,	
Community	linked to impacts	ies in the		quality, noise and		Operati		ISMPE	
expectation/rel	associated with	area of		traffic.		ons		nv,	
ations	operation phase issues	influence						ASMEn	
Management	(like air and dust							v and	
	emissions, traffic, and							AnSME	
	community							nv	
	safety/security,			Inform communities		TCN	AfDB -	FMENV	
	noise/vibration, etc.) and			about details of		Line	PIU	,	
	adverse			operation activities		Operati		ISMPE	
	impact/inconveniencies			(e.g., employment		ons		nv,	
	resulting from it.			opportunities) by				ASMEn	

			Significan		Significa	Responsibilities			
Indicator	Potential impact	Receptor	ce (pre- mitigation)	Mitigation or enhancement measures	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng	
	Dealing with			billboards, posters				v and	
	community/stakeholder			and plant visit				AnSME	
	perceptions around							nv	
	cumulative impacts			Set-up, manage and		TCN	AfDB -	FMENV	
	linked to the new plant			manage grievance		Line	PIU	,	
	and existing cement			mechanism		Operati		ISMPE	
	plant operations.					ons		nv,	
	Disappointment about							ASMEn	
	electricity supplied to							v and	
	national grid, while							AnSME	
	locally electricity supply							nv	
	has reduced reliability			Sharing of		TCN	AfDB -	FMENV	
				independent		Line	PIU	,	
				monitoring reports of		Operati		ISMPE	
				all monitoring actions		ons		nv,	
				during construction				ASMEn	
				as mentioned in this				v and	
				ESMP.				AnSME	
								nv	
				Engage communities		TCN	AfDB -	FMENV	
				in the monitoring		Line	PIU	,	
				activities to enhance		Operati		ISMPE	
				transparency and		ons		nv,	
				involvement.				ASMEn	
								v and	

			Significan		Significa	Respon	sibilities	
Indicator	Potential impact	Receptor	ce (pre- mitigation)	Mitigation or enhancement measures	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng
								AnSME
								nv
				Enhance ongoing		TCN	AfDB -	FMENV
				consultations with		Line	PIU	,
				local communities		Operati		ISMPE
				(with good		ons		nv,
				representation) by				ASMEn
				TCN to create				v and
				continuous dialogue,				AnSME
				trust and planning of				nv
				community				
				development				
				activities. Coordinate				
				Stakeholder				
				Engagement of all				
				partners of industrial				
				site, prepare and				
				implement				
				Stakeholder				
				Engagement Plan				
				Explain effects of		TCN	AfDB -	FMENV
				electromagnetic		Line	PIU	,
				fields to communities		Operati		ISMPE
				to limit concerns.		ons		nv,
				Keep fields within				ASMEn
				limits of International				v and

			Significan		Significa	Respon	sibilities	
Indicator	Potential impact	Receptor	ce (pre- mitigation)	Mitigation or enhancement measures	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng
				Commission on Non-				AnSME
				lonizing Radiation				nv
				Protection (ICNIRP).				
				Interference with		TCN	AfDB -	FMENV
				radio/TC		Line	PIU	,
				transmission during		Operati		ISMPE
				rain needs to be		ons		nv,
				explained to the				ASMEn
				communities				v and
								AnSME
								nv
Community	External safety risks of	Affected	Moderate	Develop an	Minor	TCN	AfDB -	FMENV
Health, Safety	electrocutions, bush	communit		emergency response		Line	PIU	,
and Security	fires, line snapping,	ies along		plan following TCN		Operati		ISMPE
	tower collapses	the RoW		and international		ons		nv,
				best practice				ASMEn
				including provisions				v and
				for prevention and				AnSME
				response to				nv
				electrocution, bush				
				tires, repair of				
				snapped lines and				
				rolos cod				
				Coordinate with				

		e e e e e e e e e e e e e e e e e e e	Significan		Significa	Responsibilities		
Indicator	Potential impact	Receptor	ce (pre- mitigation)	Mitigation or enhancement measures	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng
				emergency services				
				of LGAs				
				Annual safety audit		TCN	AfDB -	FMENV
				of the transmission		Line	PIU	,
				lines and poles and		Operati		ISMPE
				maintenance of the		ons		nv,
				RoW to keep free of	:			ASMEn
				higher vegetation				v and
				and structures.				AnSME
								nv
				Communicate to		TCN	AfDB -	FMENV
				communities in RoW	,	Line	PIU	,
				the safety risks of the		Operati		ISMPE
				transmission lines		ons		nv,
				and provide				ASMEn
				response measures.				v and
				Put sign boards on				AnSME
				towers about				nv
				electrocution risk.				
Labour and	Exploitation of workers	Labour	Minor	Follow human	Negligib	TCN	AfDB -	FMENV
working		force for		resources policies	le	Line	PIU	,
conditions		maintena		and procedures of	:	Operati		ISMPE
		nce work		TCN, following		ons		nv,
				Nigerian Labour Law				ASMEn
				and ILC				v and
				conventions.				

Sig		Significan		Significa Responsibilities				
Indicator	Potential impact	Receptor	eptor ce (pre- mitigation)	Mitigation or enhancement measures	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng
				Provide reasonable,				AnSME
				and if applicable				nv
				negotiated, working				
				terms and				
				conditions.				
				Establish worker's				
				grievance				
				mechanism, so that				
				potential conflicts				
				can be dealt with in				
				an early and proper				
				way.				
				No use of child				
				labour (workers				
				under age 18) or				
				Torced labour.				
				labour standards by				
				supply chain and				
				subcontracts				
				including training if				
				A worker's grievance				
				mechanism will be in				
				place.				
1				ľ				

			Significan			Significa	Responsibilities			
Indicator	Potential impact	Receptor	ceptor (pre- mitigation)		tion ncement ures	or	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng
	Occupational H&S risks	Labour	Moderate	TCN	should	follow	Minor	TCN	AfDB -	FMENV
	in operation and	force		their	Occupa	ational		Line	PIU	,
	maintenance			HSE	plan fol	lowing		Operati		ISMPE
				Nigeri	an	and		ons		nv,
				intern	ational					ASMEn
				requir	ements:	train				vand
				staff,	monitor	and				AnSME
				keep	record. S	Special				nv
				focus	on slip-tr	rip, fall				
				from	height	and				
				electro	ocution	in				
				mainte	enance	and				
				repair	,	works,				
				emerg	gency					
				preve	ntion	and				
				mana	gement.	Use				
				perso	nal prot	tection				
				equipi	ment.	Have				
				medic	al emer	rgency				
				equipi	ment at h	and.				
Employment	Improved electricity	National	Positive	Regul	ar		Positive	TCN	AfDB -	
and Economy	supply for the national	level		mainte	enance	of the		Line	PIU	
	grid, creating	Nigeria		projec	t to e	ensure		Operati		
	opportunities for			reliabl	e produc	tion of		ons		
	businesses and			power						
	economic development									
	in the country.									

			Significan Significa			ibilities		
Indicator	Potential impact	Receptor	Receptor ce (pre- mitigation) PAPs E:	Mitigation or enhancement measures	nce (post- mitigatio n)	Mitigati on Action	Supervisi on	Monitori ng
Possible	Health impacts	PAPs		Establishment of		TCN	AfDB -	FMENV
Encroahment	associated with			perimeter fencing for		Line	PIU	,
of the TL RoW	exposures to EMF			the RoW using local		Operati		ISMPE
				native shrubby		ons		nv,
				species				ASMEn
								v and
				Conduct				AnSME
				sensitization				nv
				programs for PAPs				
				on the health impacts				
				on residing within				
				specified buffer for				
				TL				
				Consult with local		TCN	AfDB -	
	Potential interactions			communities on		Line	PIU	
	between maintenance	Affected		festivals and		Operati		
Cultural	works and cultural	communit		potentials for	Nealiaih	ons		
heritage	festivals due to traffic	ies in the	Minor	interaction with	lo			
nontago	noise and/or vibration	nes in the		maintenance works.				
	limnacts	1.000		If required cease				
				works on the specific				
				dates.				

Table 9.4 provides details of monitoring during the construction and operation phases.

Table 9.4Environmental and Social Monitoring Plan During Construction Phase and OperationPhases of the Project

	Construction P		Operation Phase		
	Cost		Annual	Component	Estimate
Component	Estimates	Frequency	Estimates		per three
	(NGN)				years
Air quality	800,000	quarterly	3,200,000	Noise, vibration & EMF	880,000
			2,400,000	Pollution Control	
Noise, vibration	600,000	quarterly		/Emmergency	10,900,000
				Response	
			16,000,000	Internal	3,700,000
				Monitoring	
				environmental	
Emergency Response		Daily at		Internal Audit	
(Risk Management of	1 000 000	Project site/		(Monitor	
PetroleumProducts in	4,000,000	Monthly		operational	
use)		during OPS		Technology,	
				Codition of	
				Equipment,	
				Facility, etc)	
Water quality	3,200,000		6,400,000	Vegetation	
Aquatic ecology				integrity and	350,000
		Twice a		Fauna protection	
		year		Stakeholder	
				relations	10,900,000
				Management/	
Visual amenities			1,200,000		
Sanitation/wastes	3.000,000	Quarterly		Health, Safety	2 350 000
management				and Security	2,000,000

	Construction P		Operation Phase			
	Cost		Annual	Component	Estimate	
Component	Estimates	Frequency	Estimates		per three	
	(NGN)				years	
Vegetation integrity and Fauna protection	500,000	Once a year	350,000	House keeping/Sanitatio n/Sensitization	5,000 000	
Stakeholder relations Management	10,200,000	quarterly	28.800,000	Environmental Audit (Holistic External Audit of TCN facility in line with EIA Act 86, 1992	15,000,000	
Health, Safety and Security	3,300,000	Quarterly	1,200,000	Health, Safety and Security	350,000	
Project Monitoring (Logistics)	2,000,000	Quarterly		Toolbox Training on Hazardous material handling, storage and disposal	7,000,000	
Toolbox training on Hazardous materials	500,000	Monthly at the Regional Level	2,000,000	Waste management	12,000,000	
Develop and implement GBV/SEA Framework and Action Plan	1, 034, 125		4, 136, 500			
Total per project phase			61,550,000		63,430,00 0	
Overall estimate	124,980,000				L	

	Construction P	hase		Operation Phase		
Component	Cost Estimates (NGN)	Frequency	Annual Estimates	Component	Estimate per three years	
Air quality	800,000	quarterly	3,200,000	Noise, vibration & ffEMF	880,000	
Noise, vibration	600,000	quarterly	2,400,000	Pollution Control /Emmergency Response	10,900,000	
Emergency Response (Risk Management of PetroleumProducts in use)	4,000,000	Daily at Project site/ Monthly during OPS	16,000,000	Internal Monitoring environmental Internal Audit (Monitor operational Technology, Codition of Equipment, Facility, etc)	3,700,000	
Water quality Aquatic ecology	3,200,000	Twice a	6,400,000	Vegetation integrity and Fauna protection	350,000	
		year		Stakeholder relations Management/	10,900,000	
Visual amenities			1,200,000	0		
Sanitation/wastes management	3.000,000	Quarterly		Health, Safety and Security	2,350,000	
Vegetation integrity and Fauna protection	500,000	Once a year	350,000	House keeping/Sanitation/ Sensitization	5,000 000	
Stakeholder relations Management	10,200,000	quarterly	28,800,000	Environmental Audit (Holistic External Audit of TCN facility in line with EIA Act 86, 1992	15,000,000	
Health, Safety and Security	3,300,000	Quarterly	1,200,000	Health, Safety and Security	350,000	
Project Monitoring (Logistics)	2,000,000	Quarterly		Toolbox Training on Hazardous material handling, storage and disposal	7,000,000	
Toolbox training on Hazardous materials	500,000	Monthly at the Regional Level	2,000,000	Waste management	12,000,000	
Develop and implement GBV/SFA	1, 034, 125		4, 136, 500			

Construction Phase				Operation Phase		
Component	Cost Estimates (NGN)	Frequency	Annual Estimates	Component	Estimate per three years	
Framework and Action Plan						
Total per project phase			61,550,00 0		63,430,000	
Overall estimate		·	•		·	

9.4 Management Subplans/Programs

The ESIA study did triggered development of specific management plans to wit;

- Air Quality Management Plan
- Water Resources Management Plan;
- Waste Management Plan;
- Biodiversity Management Program;
- Community Health and Safety Management Plan
- Traffic Management Plan

Each plan outlines developmental and implementable procedures as part of the overarching ESMS to be developed and implemented by TCN and the Contractor, as applicable.

Furthermore, the Contractor is required to develop and implement the following Construction triggered Management Plan

- Access Roads Location and Management Plan;
- Soil and Erosion Management Plan;
- Update the Traffic Management Plan;
- Training and Skill Transfer Program;
- Worker's Health and Safety Management Plan;
- Rehabilitation and Revegetation Plan;
- Environmental and Social Code of Conduct;
- Contractors' GRM for Communities and Workers;

Method Statements, including, but not limited to erosion control, water crossing, work in heights, and others that may be required by the PIU.

These specific management plans will be drafted by the Contractor, based on the requirements presented in this ESMP, and submitted to TCN for approval in consultation with AfDB prior to activity kick off.

9.4.1 Air Quality Management Program

Justification and Objectives

Generation of particulate matter and emission of GHG is expected mainly at the initial decommissioning and construction phases of the project. When super imposed on the ambient condition, baseline levels above regulatory limits for some microenvironment are likely. This plan is aimed at controlling GHG emissions and PM generation particularly at preconstruction and construction phases. No significant impacts on air quality were identified for the operational phase while the 50year operational period before decommissioning makes it untenable to have included decommissioning in the Plan.

Legal Framework

Legislative safeguards for air quality in Nigeria are enshrined in FEPA 1999 and FMEnv 2004 document on regulatory limits as outlined in Table 9.6.

Actions and Implementation Schedule

Tables 9.5 provides applicable control and actionable mitigation measures during the initial decommissioning and construction phases (various applicable activities were spelt out in Table 9.6), in order to reduce the emission footprint of GHG and PMs. It also provides in-built design systems to achieve emission reduction. Implementation of the spelt-out mitigation measures shall address GHG emissions and PM generation concerns.

Table 9.5: Air quality management program – actions, description and implementation schedule

Control and Mitigation Actions	Description	Implementation Schedule	Responsibility for Implementation	Supervision
	Movement of men and machineries to be planned to avoid residential areas, hospitals and schools as practicably possible	Initial decommissioning	Contractor	FMEnv
	Schedule maintenance of machineries shall be strictly adhered to avoid release of avoidable noxious gases. Scheduled daily equipment working hours, operator's training program and weekly safety briefings shall be some factors in the internal monitoring system. Minimizations of hauling distances by sourcing construction materials near-by I as much as possible. An allowable 0.2- 0.4 m space be left unloaded for any construction materials carrying trucks.	Initial decommissioning During construction	Contractor	FMEnv
	Trucks carrying dusty materials needed be adequately covered; Stockpiles of granular materials need be waterproofed protected and/or sprinkled with water constantly			

Control	Use of water as dust suppressants shall be employed in every work front with unpaved		Contractor	EMEnv
emissions of	surfaces twice per week in wet seasons and daily during dry seasons.	Twice weekly in	Contractor	
dusts and		wet seasons and		
pollutant gases	The construction lay down area shall be sprinkled with water twice a week during wet	daily (in the dry		
	seasons and daily during dry seasons.	season, during	Contractor	FMEnv
		construction		

Follow-up Monitoring on Mitigation effectiveness and Grievance Receipt

Air quality monitoring actions shall be developed during the initial decommissioning and construction phase in areas less than 250m to residential areas and 100m to hospitals and schools. Parameters to be measures are CO, CO₂, SO_X, NO_X and CH₄. A biweekly frequency monitoring is planned.

FMEnv Air sampling methods adopted in Chapter 6 (Result Interpretation).

Table 9.6 summarizes the follow-up and monitoring actions and the implementation schedule.

Table 9.6 – Air quality management program - follow-up and monitoring actions, description and implementation schedule

Follow-up or Monitoring	Description	Implementation
Action		schedule
Periodic air quality	Air quality monitoring stations shall be established during	Biweekly during
monitoring	construction phase at the defined threshold distances near	construction
	three sensitive receptors, Homes, schools and hospitals.	
Air quality monitoring in	If complaints from the local population regarding air quality	When necessary
response to complaints	are registered,	
	(i) Corrective actions for simple complaints such as need	
	for additional or more frequent watering program for dust	
	control, traffic speed issues shall be implemented ASAP	
	and	
	(ii) air quality monitoring will be undertaken near the	
	affected sensitive receptors, to verify the ambient air quality	
	levels and define additional mitigation, if required.	

Corrective Actions

In the event that the air quality values recorded exceed FMEnv regulatory limits, or if complaints from the local communities are lodged, causal factors for such elevated concentrations shall be identified and corrected. Elevated concentrations normally result from failure to adhere to any or some of the mitigation measures listed in Table 9.2.

In the event of non-compliances, additional mitigation measures shall be defined on case by case basis ranging from warning, verifiable evidences of vehicle having been serviced and increase frequency of training and safety briefings.

A monitoring campaign will be undertaken in areas where non-compliances were recorded, to verify the resolution of the issue.

Reporting

Performance Indicators

Table 9.7 lists the performance indicators to be monitored for the Air Quality Management Program:

|--|

Indicator	Target	Trend
Number of TPM exceeded during periodic	<10% of monitored sites with	% of recorded TPM
monitoring	recorded elevated	concentrations above FMEnv
	concentrations above FMEnv	regulatory limits decreases
	standard	bi-weekly
Concentration of SOx, CO, CO ₂ , CH ₄	<10% of monitored sites should	% of recorded measured
exceeds FMEnv regulatory limit during	exceed FMEnv regulatory limits	gases decreases biweekly
periodic monitoring		
Number of community complaints regarding	1 complaint per month per near	Number of complaints
air quality	sensitive receptor	decreases bi-weekly
Number of verification monitoring campaigns	Equal to number of complaints	NA
in response to complaints		
Number of additional air quality mitigation	Equal to or greater than number	
measures undertaken in response to	of complains	NA
complaints		

Note: NA. – Not Applicable.

The performance indicators results shall be compiled quarterly

Reports

Table 9.8 summarize the documental records that will be kept, to control the execution of this specific environmental management program. These documents will be prepared, archived and maintained by the PIU.

Document Title	Document Type	Frequency of Record or Report
Record of periodic air quality monitoring	Record	Quarterly
Record of air quality associated community complaints	Record	On occurrence
Record of air quality monitoring in response to		
complaints and mitigation responses	Record	On occurrence
Performance Report	Report	Quarterly

Table 9.8: Record Documents for the Air Quality Management Program

9.4.2 Water Resources Management Program

Justification and Objectives

The purpose of the Water Resources Management Program is to guarantee conservation of the water resources present in the Project area. The plan includes control and mitigation actions to protect water resources, namely actions to prevent their siltation, abstraction and their contamination by effluents generated during the proposed activities.

Legal Framework

The present plan takes into consideration both the Nigerian legislation referring to water resources, including Harmful Waste (Special Criminal Provisions) Act, Cap H1, LFN 2004, Rivers Basin Development Authority Act, Ca R9, LFN 2004, Water Resources Act, Cap W2, LFN 2004, National Environmental Standards and Regulation Enforcement Agency (NESREA) Act, 2007 as well as applicable international guidelines (AfDB and WHO standards). The FMEnv/WHO specific limits for each measured parameter are present in this chapter.

Actions and Implementation Schedule

Table 9.9 lists the control and mitigation measures to be applied during construction, in order to minimize impacts on surface and groundwater resources while Table 9.10 lists Water Resources Management Program actions, description and implementation.

Table 9.9: Control and Mitigation Measures to be Applied during Construction

Control and Mitigation	Description	Implementation	Responsibility	Supervision
Actions		Schedule	for	
			Implementation	
Minimize the changes on	The Contractor is	Initial	Contractor	PIU
natural run-off patterns	required to submit	decommissioning		
	method statement for	/During		
	each of the 15 water	construction		
	crossings for FMEnv			
	approval;			
	Avoid dumping or water			
	abstracting water from			
	the river/dams for			
	construction activities			
	(including movement of			
	machinery), as much as			
	possible;			
	Whenever possible,			
	carry out works on			
	river/dams' areas, in the			
	dry season,			
	Do not obstruct water			
	channels, even if			
	temporary. Ensure that			
	suitable transversal			
	culverts, viaducts, etc.			
	are in place;			
	Any river/dams affected			
	accidently shall be			
	rehabilitated as close to			

its pristine state as		
possible;		
Temporary stream		
diversions will be big		
enough to allow free		
flow of water without		
damming and		
submerging riparian		
vegetation for long		
periods; Use of		
sandbags, useof fiber		
rolls, reno- mattresses,		
and plastic liners where		
appropriate shall be		
employed as erosion		
control measures in		
sloppy or temporary		
stream diversion areas.		
Minimize the clearance		
of riparian vegetation.		
Clearing of riparian		
vegetation shall be done		
in stages, as working		
areas progress. Trees,		
shrub and grass species		
will be retained		
wherever possible. The		
affected areas will be		
rehabilitated, using		
native species on		
completion of works.		

	Water channels will be			
	kept free from			
	obstruction at all times.			
	Any erosion damage will			
	be repaired as soon as			
	possible.			
Prevent water quality	No soil, vegetation,	Initial	Contractor	PIU
contamination/abstraction	waste or construction	decommissioning		
	materials will be	During		
	discharged on water	construction		
	courses;			
	Natural water resources,			
	including sources,			
	streams or open water			
	bodies, will not be			
	abstracted any reason,			
	any activity requiring			
	washing shall only be			
	conducted in within lay			
	down area;			
	Prohibit workers to use			
	natural waterways for			
	recreational purposes,			
	bathing or washing;			

Table 9.10: Water Resources Management Program – actions, description and implementation schedule

Control and		Impleme	Responsi	Super
Mitigation	Description	ntation	bility for	vision
Actions		Schedule	Impleme	
			ntation	
Prevent water	Store oils, fuels and other hazardous and potentially	Initial	Contract	PIU
quality	pollutant products in bunded walls or in impervious	decommi	or	
contamination	structures;	ssioning		
	Dedicated impervious surface and containment	During		
	structures (situated not less than 100m from residential	construct		
	areas) shall be provided for equipment and vehicles	ion		
	maintenance.			
	Defined parking lots shall be inspected daily for spillage			
	and cleaned up immediately if spills occur.			
	Provide an impervious surface and containment			
	structures for fuel supply. Perform scheduled routine			
	maintenance on vehicles to prevent oil leaks.			
Prevent water	Develop a plan for prevention and containment of spills.	Initial	Contract	PIU
quality	Ensure spill preventive training of all site staff. Immediate	decommi	or	
contamination	spills containment, abstraction of freed products and	ssioning		
	appropriate soil remediation efforts should be conducted.	During		
	Use of circumferential hydrologic barriers or hydraulic	construct		
	barrier walls should be developed to prevent groundwater	ion		
	contamination			
	The lay down area for any water usage activity such as			
	equipment washing should be sapped to a vacuum-			
	packed invulnerable secluded withholding sink far away			
	from natural drain channels to prevent inadvertent spills			
	from polluting soil and water components. Ensure non-			

	absolution of produced waste in the receptive			
	environment through collecting and channeling to oil and			
	grease separation pits			
Prevent	Sites of over burden stockpiling should not be established			
turbidity and	on or nearby or along water drainage routes. Soil over			
sedimentation	burden should be covered during wet seasons and/or	During	Contract	PIU
rate into water	during intense windy conditions;	construct	or	
bodies	When possible, removal of vegetation should be	ion		
	conducted in phases.			

Remedial Actions

Remedial actions are affected when and if deviations from the expected outcomes are observed during thefollow-up and monitor actions. The extent, scale and pattern of the remedial actions or supplementarymitigation measures shall be case specific. Table 9.10 outlines the proposed remedial actions. Table 9.11 is a drawn –up follow up monitoring program for the WRM.

Table 9.11: Water Resources Management Program – Remedial actions, description and implementation schedule

Follow-up d	r	Implementation	Responsibility for	
Monitoring Action	Description	Schedule	Implementation	Supervision
Monitor rate o	fPlanned on the spot	Monthly during Initial	contractor	PIU
turbidity an	dassessment of water bodies to	decommissioning and		
sedimentation o	ofdetermine sedimentation and	construction		
water bodies	turbidimetric load	(when working near		
		water bodies)		
Monitor erosio	nConduct planned on the spot	Monthly during Initial	contractor	PIU
damage or risks t	oassessment of water bodies for	decommissioning and		
riverbanks		construction (when		

	the erosion risk determination to	working near water		
	shorelines.	bodies)		
Monitor occurrence	Conduct planned spillage	During Initial	contractor	PIU
of spillages in water	assessment of parking lots, fuel	decommissioning		
resources	supply areas, and other lay down	andConstruction		
	areas for spill occurrence;	Phase, weekly.		
	Conduct containment and clean			
	- up operations if spills are	When applicable		
	observed. Document all			
	assessment schedules including			
	cleaning protocols			
	Record all accidental spillages			
	occurring in water resources.			
	Record the date, location,			
	approximate volume of each			
	spillage and implemented			
	corrective measures.			
	Any undue erosion damage or	Whenever necessary		
Remedy erosion	risks to water bodies shall be		Contractor	
damage to	corrected using consolidating			
shorelines and	ingredients or other suitable			
divans, and	techniques;			PIU
blockage of water	Extreme sedimentation to water			
flow channels	courses shall be corrected using			
	siltation/dredging technique			
	where blockage of flow is the			
	causal factor.			

	If situations of high sediment	Whenever necessary	Contractor	PIU
Act on significant	load inputs are observed, locally			
increases of water	appropriate remedial measures			
bodies	such as:			
sedimentation	Silt fences can be placed around			
	affected areas to sifter dregs;			
	Patterned weirs should be			
	placed in the erosive paths to			
	reduce erosion;			
	Temporary ditches, berms, and			
	pit lakes or ponds could be			
	constructed to collect runoff so			
	that entrained deposits could			
	settle out of the water prior to			
	being released from the site into			
	water bodies.			
	Containment and clean- up	Whenever necessary	Contractor	
Act on accidental	operations should be instituted if			PIU
spillages	any accidental spill is detected.			
	Determine the causal factor(s)			
	responsible for the spill and			
	implement preventive measures			
	to avoid future occurrence			

Performance and Reporting

Table 9.12 lists the performance indicators to be monitored for the Water Resources Management Program:

Table 9.12 – Performance indicators for Water Resources Management Program

	ndicator	Target	Trend
--	----------	--------	-------

< 2 per quarter	Number of events decreases
	quarterly
Equal to number of events	NA.
detected	
< 1 per quarter	Number of events decreases
	quarterly
Equal to number of spills	NA.
	< 2 per quarter Equal to number of events detected < 1 per quarter Equal to number of spills

Note: NA- Not Applicable

The performance indicators results shall be determined and compiled in quarterly reports, as indicated in the following section.

Reports

Table 9.13 summarizes the documental records that will be kept controlling the execution of this environmental management program. These documents will be prepared, archived and maintained by the PIU, in order to document the results of the program implementation. Records of relevant events will be made following the occurrence and a quarterly Performance Report will be prepared and submitted to the FMEnv.

Table 9.13: Red	cord documents	for the Water	Resources	Management F	Program
-----------------	----------------	---------------	-----------	--------------	---------

Document Title	Document Type	Frequency of Record or
		Report
Record of periodic effluent water quality monitoring	Record	Monthly
Record of periodic visual inspection of rivers and stream	Record	Monthly
sedimentation		
Record of periodic spill inspections	Record	Weekly
Record of accidental spill	Record	On occurrence
Performance Report	Report	Twice a year

9.4.3 Waste Management Plan

Objectives

The purpose of this plan is to provide guidance to personnel and Contractors on management of miscellaneous hazardous and non-hazardous waste generated during the Life of the Project particularly during construction. The waste management approach focuses on the implementation of the three "R" s (Reduce, Reuse and Recycle) as defined by the Federal Ministry of Environment. Waste management comprises the collection, conditioning, transportation and deposition at a legally designated final place.

Adequate waste management is basic to prevent soil and water resources contamination. It is also important to maintain community and occupational health of workers and indigenes by avoiding proliferation of pests and diseases.

The present program takes into consideration the Nigerian as well AfDB/TCN EHS General Guidelines.

Scope and Responsibilities

These procedures apply to those units and their personnel that are involved in the management of hazardous and non-hazardous wastes. The Waste Management Plan is applicable to all initial decommissioning and construction activities. The operational phase is also expected to generate relevant amounts of vegetal waste, especially during RoW maintenance. Waste management procedures shall also be applied in substations.

The responsibility for implementing the proposed waste management actions and procedures falls with the various Contractors involved in the Project's construction phase, which will need to use the guidelines provided in this plan to develop specific waste management procedures applicable to their activities. TCN is responsible for auditing the Contractors' activities, to ensure that best practice waste management procedures are being followed.

Availability of Waste Disposal Facilities

The development of this plan and its upgrade by the Contractor took/shall take into consideration availability of waste facilities in Abia, Anambra and Imo States.

Waste management in the project area is the responsibility of Imo State Environmental and Protection Agency (ISEPA), Abia State Environmental and Protection Agency (ASEPA) and Anambra State Waste Management Agency (ASWMA). No public landfills exist in the Project area, rather many municipal waste sites.

As for hazardous waste, there is one licensed facility in the projectarea (DEL Waste Management Company Limited, Rivers State). This facility is an adequate final destination for the small volumes of solid and hazardous waste likely to be generated by the Project.

Waste Management Actions

Table 9.14 below summarizes the proposed waste management actions.

Table 9.14: Waste management actions

Waste		Implementatio	Responsib	
management	Description	n Schedule	ility for	Supervision
actions			Implement	
			ation	
Prepare	• Prepare inventory of any hazardous and non-	Initial	Contractor	PIU
waste	hazardous waste	decommissio		
inventory	 Classify the waste; 	n phase		
	• Define sources, volumes and indicate appropriate			
	final destination for each type of waste, taking into			
	consideration the specifications of the region in			
	question in what concerns the availability of waste			
	treatment and disposal facilities.			
Reduce waste	• Working sites must be kept clean, neat and tidy at all	During	Contractor	PIU
production	times;	construction		
	Avoid leaving garbage unattended to in order to avoid			
	attracting pests and nocturnal carnivores;			
	• Implement daily cleaning routines to minimize waste;			
	• Promote the recycling and recovery of waste in			
	coordination with municipal authorities			
	 Use materials which can be reused easily; 			
	• List and estimate the volume of waste that can be			
	reused, recycled or re-process (example, wood			
	scraps, soils, none used materials);			
	• Ensure that the quantities of construction materials			
	on site are as accurate as possible, to avoid			
	surpluses that could result in construction waste.			

Non-	Provide specific colour coded containers of	During	Contractor PIU
hazardous	appropriate sizes (according to the expected waste	construction	
waste	volume) for the placement of waste in different		
segregation	working areas. The segregation will be carried out as		
	close as possible to the place of production. These		
	shall ensure adequate hygiene and sealing		
	conditions;		
	Strictly prohibit littering with plastic or other wastes by		
	all project personnel;		
	• Provide different containers for each type of waste		
	that can be reused, recycled or re-processed.		
	Containers will be clearly identified according to their		
	categorization and classification, allowing to clearly		
	identify its contents;		
	• Waste segregation must be carried out accordingly,		
	ensuring that waste does not exceed the top of		
	containers;		
	• The containers must be constructed of an appropriate		
	material to prevent leakage, clean and always closed;		
	• All produced waste will be sorted according to its		
	type. Waste segregation will be initially done by		
	workers;		
	Produced waste will be removed daily and temporary		
	stored in Temporary Store Facilities until transported		
	to final destination.		

		Non-hazardous waste must be temporarily stored,	During	Contractor PIU
		prior to final destination, at only one designated	construction	
		area. This area must be duly delimited and signed		
		("Waste Storage Area"). The area should have a firm		
		water-proof base that is protected from the ingress		
		of storm water from surrounding areas. It must also		
		have an effective drainage system to a waterproof		
		spillage collection area, where any spillage can be		
Temporary		recovered and suitably treated. This area must be		
storage		clearly demarcated and should not be accessible to		
facilities	for	unauthorized persons. The containers should not be		
non-		easily corrodible but rodent-resistant, insect-		
hazardous		resistant and have handles at the sides and tight-		
waste		fitting overlapping covers.		
	•	Inert waste may be stored in the open without the		
		need for a waterproofing floor in a designated and		
		delimited area;		
		Location of waste Temporary Storage Facilities		
		must be at least 50 m from water courses and		
		ground depressions;		
		Maintain a good organization of space and cleaning		
		of waste storage areas;		
		Waste materials that can be reused by the		
		community, such as removed soil and stones, cut		
		wood and other building materials could be made		
		available for pick up in an orderly fashion and with		
		proper safety arrangements.		
Non-	•	Prior to transport, an FMEnv certified laboratory	During	Contractor PIU
hazardous		shall confirm it to be nonhazardous. If confirmed as	construction	,
waste fi	inal	non-hazardous, a waste manifest detailing content,		
destination		volume, the generating company should be		

Geomatics Nigeria

EMEnv states and AfDB environmental and social	
final disposal site for the waste ensuring that it meets	
PIU and the Contractor will agree on and document the	
basis;	
Non-hazardous waste will be removed on a weekly	
Prohibit waste incineration;	
Use accredited waste vendors from affected states	
unauthorized location	
 Prohibit the burial or dump of any type waste in 	
must be obtained;	
management authorities. The necessary licenses	
be agreed and authorized by the State waste	
The final destination and transport of waste must	
responsibility of Contractor;	
 The final destination and transport of waste are the 	
originating dust;	
segregation, and without causing leaks or spills and	
carried out safely: without compromising its	
Transfer operations of waste containers must be	
vehicles must be easily washable;	
waste, and in good operating condition. These	
an appropriate vehicle, capable of containing the	
driver. The transport of waste must be carried out in	
produced in duplicate and a copy handed to the	

	Containers will be made of appropriate material so	
	that they are not damaged by their content and that	
	damaging or dangerous substances are formed.	
	They shall ensure adequate hygiene and sealing;	
	Provide different colour coded containers for	
	each type of hazardous waste to be produced.	
	Hazardous waste will not be mixed with other	
	types of waste;	
	Containers will be placed on wooden pallets or	
	plastic pails;	
	Maintain containers clean and always closed;	
	All produced waste will be sorted and placed in the	
	corresponding container.	
Temporary	Hazardous waste will not be stored at the work During Contractor PIU	
Storage	fronts, and must be transported daily to Temporary construction ,	
Facilities for	Storage Facilities built by the Contractor for this	
Hazardous	purpose or hired through a certified service provider;	
waste	Hazardous waste must be temporarily stored,	
	prior to final destination, at only one designated	
	area. This area must be duly delimited and signed	
	("Hazardous Waste Storage Area") and with	
	restricted access. The area must be roofed, properly	
	ventilated and have impermeable surface floor;	
	Location of the Waste Temporary Store	
	Facilities must be away (100 m) from water courses	
	and ground depressions;	
	No smoking will be allowed in the vicinity of	
	hazardous waste storage area. Place appropriate	
	symbolic signage (No smoking, No naked light and	
	danger);	

	• Provide extinguishers near the waste storage			
	areas;			
	Maintain a good organization of space and cleaning of			
	waste storage areas.			
Transport of	• The transporting vehicle/medium within the site	During	Contractor	PIU
Hazardous	of generation must be waterproof and of high	construction	3	
Waste	mechanical stability. The vehicle must display the			
	hazard sign, the remedial measures/first aid sign			
	during accidental discharge, telephone number of			
	contact person(s) need be boldly inscribed on the			
	vehicle.			
	• The transport of hazardous waste, within the			
	facilities of the Contractor up to the storage location,			
	will be made resorting to appropriate equipment or			
	vehicles capable of containing the waste and in			
	good operating conditions. These vehicles must be			
	easily washable. The transport vehicle will be dully			
	identified with signs for the transportation of hazard			
	material;			
	• Hazardous waste must be transported (internal			
	transportation) in containers. The transport must			
	have steel clamps for securing the containers and			
	guarantee safe transport;			
	• The transportation of hazardous waste transport			
	outside the facilities of the Contractor can only be			
	made by an entity licensed by DEL Waste			
	Management Company Limited, Rivers State			
	When the hazardous waste is collected, a manifest, in			
	four copies, will be completed, indicating the quantities,			
	quality and destination of the collected waste; one copy			
	is kept by the waste generating entity, another copy is			

Geomatics	Nigeria Limited

	kept by the waste transporting entity, the third copy is)
	kept by the entity receiving the product and the fourth	
	copy is sent to DEL Waste Management Company	
	Limited, Rivers State, Provide the workers responsible	
	for the handling of hazardous waste with adequate PPE	
	(work wear, gloves, boots and masks).	
Hazardous	The final disposal of hazardous waste will be made PIU	
Waste Final	at an infrastructure licensed by DEL Waste During Contractor	
Destination	Management Company Limited, Rivers Statefor construction ,	
	storage, treatment and/or final disposal of	
	hazardous waste. The nearest such infrastructure is	
	the DEL Waste Management Company Limited,	
	Rivers State	
	Whenever possible, enforcement of the buyback policy	
	with the suppliers should be invoked.	

Follow-up Actions

Table 9.15 summarizes the follow-up and/or systematic and/or periodic verification actions proposed forwaste management.

Follow-up and/or verification	Description
action	
Inspection of the waste	Perform daily visual inspections of the hazardous and non-hazardous waste
storage areas	storage areas, to verify if the existing containers are adequate to the volume
	of waste produced, the correct waste sorting and conditioning is being carried
	out. Also ensure zero spill processes is continually in place, and that any
	accidental spill is promptly contained and clean- up operations instituted
	immediately. Verify the integrity of the containers and other environmental
	control systems/equipment.

Table 9.15: Waste Management Follow-up Actions

Inspection of working areas	Perform daily visual assessment of work areas for organizational sanctity and
	site cleanliness
Verification of final disposal	Undertake annual due diligence visits to the final disposal sites to confirm that
sites	final elimination is in compliant with applicable TCN, FMEnv. and AfDB
	environmental and social safeguards guidelines detailed in its Integrated
	Safeguards Standards (ISS)

Remedial Actions

Table 9.16 summarizes the corrective actions and their implementation schedule.

	Table 9.16:	Waste Manage	ment Plan - cori	rective actions,	description	and imp	plementation	schedule
--	-------------	--------------	------------------	------------------	-------------	---------	--------------	----------

Corrective Actions	Description	Implementatio
		n Schedule
Spill mitigation actions	Removal of substances accumulated in the spill containment	When
	trays sinks;	applicable
	Repair or change the damaged container that leaks.	
Response to complaints	In response to workers or community complaints about odors	When
	or pest's proliferation, increase the frequency of waste	applicable
	collection.	
Corrective action for	Provide or increase the quantities of proper containers in the	When
improper waste storage	storage areas where waste increases are evident.	applicable
	Increase the frequency of waste collection.	
Corrective action for	Increase awareness about waste management.	When
littering and illegal		applicable
dumping		

Performance and Reporting

Table 9.17 lists the performance indicators to be monitored for the Waste Management Plan.

Table 9.17: Performance indicators for Waste Management Plan

Indicator	Target	Trend
-----------	--------	-------

Weekly volume of waste produced, by	Volumes will be recorded. No target is	Volume of waste per
type (hazardous and non-hazardous)	applicable (as volumes will depend on	workday decreases
	activity).	quarterly (showing efforts
		to reduce waste
		production)
Weekly volume of waste transported to	Equal to weekly volume of waste	NA
final deposition	produced.	
Number of improper waste	< 5 per quarter	Number of events
management procedures detected		decreases quarterly
Number of adopted corrective actions	Equal to number of improper waste	NA.
in response to detection of improper	management procedures detected	
waste management procedures		

Note: NA. – Not applicable.

The performance indicators results will be determined weekly and compiled in quarterly reports, as indicated in the following section.

Reports

The following table summarizes the documental records that will be kept controlling the execution of the waste management plan. These documents will be prepared, archived and maintained by the contractor, in order to document the results of the plan's implementation.

Table 9.18: Record documents for the Waste Management Plan

Document Title	Document Type	Frequency of Record or
		Report
Weekly volume of waste produced, by	Record	Weekly
type		
Weekly volume of waste by category	Record	Weekly
transported to final deposition		
Weekly volume of waste recycled or	Record	Monthly
reused		

Record improper waste management				
procedures detected and remediation	Record	Weekly		
ictions undertaken				
Performance Report	Report	Quarterly		

9.4.4 Biodiversity Management Program

Justification and Objectives

The construction and operation of the proposed Project will result in some biodiversity impacts, on vegetation (Freshwater Habitat) and wildlife, particularly *Halcyon badia, Polybroides typhus, Merops gularis, Miscicapa comitata, Muscicapa cassini* (raptor species) and *Polybroides typhus* (migratory avian species). Baseline result showed five threatened flora (*Sericanthe toupeto* (Endangered), and *Afzelia africana, Dalbergia latofolia, Ricinidendron heudelotii and Lophira alata* (Vulnerable) species in the study area. Invasive species (*Chromolaena odorata, Mimosa pudica and Dalbergia sisso*), was also censored. Monitoring and management actions for these biodiversity components are required, so as to continuously evaluate the Project's impacts and the efficacy of the proposed mitigation. The PIU will prepare a Biodiversity Management Program (BMP). The BMP will establish baseline values for the managed/monitored activities, implementation schedule, and responsibility for carrying out the monitoring and corrective actions, supervision responsibilities, budget estimates, and source of funding.

Monitoring and Management Actions and Implementation Schedule

Table 9.19 lists:

The scope of the BMP, which includes: (a) invasive species; (b) deforestation rate in all habitats and wildlife poaching activities, biodiversity monitoring and management actions; and (c) birds fatality monitoring (d) IUCN threatened species monitoring

- Brief description of the actions to the implemented;
- Implementation schedule;
- Responsibilities for implementation of management and monitoring program; and
- Supervising agency(ies)
- For each activity in Table 9.20, the BMP will identify:
- Baseline values (including direct and indirect/induced impacts);

- Monitoring indicators (including direct impact of the transmission infrastructure constructed, as well as indirect/induced impacts of the right of way, access roads, and other ancillary infrastructure);
- List of potential remedial actions and their triggers;
- Estimated costs / indicative budget; and
- Source of funding

Details on the monitoring methodology are provided in the following sections:

Table 9.19 – Biodiversity monitoring and management actions, description and implementation schedule

Monitoring and	Description	Implementation Schedule	Responsibility for	Supervision
Management Actions			Implementation	
Invasive flora species	 Monitor the presence and proliferation of invasive flora species along the 	Annually during	Contractor, (construction)	PIU
monitoring and	RoW, access road, lay down areas, construction materials storage camp	construction and twice per	PIU (operation) to be	
management	and borrow pit areas.	year during the first five	carried out by Independent	
	 Use cultural practices to remove invasive/alien species if observed. 	years of operation	Biodiversity Consultant	
			financed by TCN	
IUCN flora species	Monitor the population and regeneration potential of the replanted	Once in every three	PIU (operation) to be	PIU
monitoring and	species	months for the first ter	carried out by Independent	
management	 If the population of these species appears to be below baseline value 	years after constructior	Biodiversity Consultant	
		phase	financed by TCN	
Deforestation rate and the	• Establish the baseline for present deforestation rates and wildlife	Annually during	Contractor, PIU	PIU
extent of wildlife poaching	poaching activities prior to the start of clearing;	construction and during	(construction)	
monitoring and	• Monitor the direct and indirect / induced impacts on natural and critical	the first five years of	PIU (operation) to be	
management – including	natural habitat (In this case, swamp forest near), on both flora and fauna	operation.	carried out by Independent	
remedial actions of impacts	on a 2 km spatial boundary on both sides of the RoW. Establish		Biodiversity Monitoring	
on riparian habitat, on both	deforestation and poaching monitoring and development of corrective		and Management	
flora and fauna	actions;			

	Register the presence of people and/or structures in and near the RoW		Consultant financed by	
	and the actions taken by local authorities to prevent illegal logging,		TCN	
	poaching or encroachment. These impacts should be assessed through	Biannually during the next	i	
	ground monitoring, as possibly via GIS mapping.	5 years of operation.		
	• If activities with significant negative impacts are observed, on natural			
	and/or critical habitat on flora and fauna, mitigation measures such as			
	targeted protection, reforestation and anti-poaching programs shall be			
	developed and enforced			
Birds and bats fatality			PIU (operation) to be	
monitoring	- Monitor bird and fruit bat fatalities due to power line collisions and (if any)	Operation (quarterly	carried out by Independent	PIU
	electrocutions.	during the first five years	Birds Monitoring and	
		of operation)	Management Consultant	
			financed by TCN	

Code of Conduct. The BMP shall specify or cross-reference all the biodiversity-related environmental rules that all contractors and project workers will be expected to follow, along with the required induction training prior to beginning work and the penalties for non-compliance.

Implementation Arrangements. For each planned activity, the BMP will indicate (i) expected implementation schedule (during construction and operation); (ii) institutional responsibilities for implementation (PIU, FMEnv, Contractor, and/or collaborating governmental entity or NGO); and (iii) Indicative budget and expected source of funds for each key BMP activity during construction and operation (funding would be from AfDB and TCN).

Monitoring Methodology

Invasive Species

The invasive flora species monitoring plan will start with the construction phase and at that time patches or individuals of invasive flora species will be identified and referenced via Geographic Positioning System (GPS). The identified patches/individuals will be removed and their potential for regrowth will be monitored annually during construction and twice per year during operation phases (at least during the first 5 years), or until no patches are detected.

If new locations of flora invasive species are detected along the corridor, access roads or lay down areas, or borrow pit areas during maintenance, those will be monitored, and removed or controlled as well.

The expansion of the monitored invasive species will be evaluated and if needed and new measures to control them will be proposed.

IUCN Species

The IUCN species monitoring plan will start after the construction phase. There is potential for deforestation by locals on replanted threatened species, especially for fuel wood as indicated in the baseline. The PIU shall organize sensitization programs in the project area on the adverse impacts of logging threatened species. Monitoring shall be carried out every three months to assess the regeneration potential of the replanted species. If in five year, the population of the IUCN species does not double baseline population, the PIU shall cause replanting to be carried again in other potentially viable sites within the project area.

Induced Impacts

The following actions will be developed as part of the BMP:

Establishment of a baseline for present deforestation rates and wildlife poaching activities 2km on both sides of the Right-of-Way via ground-truthing, and possibly using GIS models

In case monitoring of the BMP observed significant negative impacts, PIU will re-vegetate or put in place targeted species manage, solve or reduce these problems, rather than only continue to watch them. The problems areas will be referenced via GPS;

Minimizing Right-of-Way and Access Road Induced Impacts. Besides providing options for reforestation or targeted protection of natural habitats and increased poaching, the BMP shall seek to prevent and minimize such impacts in the first place. Effective strategies for doing this should include, as feasible, (i) Restrict TL and Access road ROW clearing only to project footprint (ii) Avoid clearing riparian habitats as practically possible.

Birds and Bats Migration

Vegetation clearing, especially at tower sites will result in fragmentation and loss of bird habitat and thus loss of bird species in the area throughout construction phase (6 months). Monitoring will be carried out to ascertain rate of adaption and migration. Monitoring shall be carried out in the operation phase (at least during the first 5 years and then re-evaluated as to the need to continue the program). This monitoring will be carried out by a qualified Biodiversity Consultant team to be contracted by TCN and led by an experienced specialist. The Consultant team shall define and follow a scientifically valid monitoring protocol that will define specific search dates, localities, and procedures

Corrective Actions

Table 9.20 presents the main remedial actions.

Table 9.20: Corrective actions, description and implementation schedule

Corrective Actions	Description	Implementation
		Schedule

Act on expansion of	If invasive Area of Occurrence (AOO) and/or Extent of Occurrence	Whenever necessary
invasive flora	(EOO) is observed to be increasing and threatening native species	
species	and habitats, actions to control and remove these patches will be	
	implemented after being properly evaluated.	
Clearing of IUCN	If the baseline population of these species reduces, replanting	Whenever necessary
species	programs shall be initiated	
Act on high levels of	If deforestation and poaching in post opening up of the RoW doubles	
impacts on natural	the initial rate prior to commencement of pre-	Whenever necessary
habitat, flora and	construction/construction, reforestation or targeted protection and	
fauna	anti-poaching measures need be instituted.	
Act on high levels of	If bat and bird's migration indicate increasing trend, the monitoring	
bird and bat	consultant shall recommend to TCN measures to restore bird	Whenever necessary
migration	habitats	

Performance and Reporting

Table 9.21 lists the performance indicators to be monitored.

Table 9 21	Performance	indicators	for Biodiver	sitv Mana	nement Program
	Fenomiance	inuicators	IOI DIOUIVEI	Sily Maha	gement Frogram

Indicator	Target	Trend
Number and extent o	Zero increase from pre-project conditions.	Both EOO and AOO increase
invasive flora species	>	between successive monitoring
patches		periods.
Deforestation of natura	Deforestation and impacts on swamp	Deforestation impacts on natural and
habitat areas and wildlife	habitat and wildlife poaching activities	critical natural habitat and wildlife
poaching activities	should not significantly exceed (by double	poaching stabilized after the
	or more) the pre- project levels.	application of additional mitigation
		measures.
Clearing of IUCN	Population of replanted threatened plant	Population of the species continues
threatened plant species	species are mature and doubles the initial	to flourish with high regeneration
	number cleared	potentials

Bird migration	For raptor and	migrator	ry spec	cies sucl	n as				
	Polyboroides	typus,	the	target	for	Fatality rate	e decrea	ises in monito	red
	migration shall	be zero.	For m	ore comi	mon	segments,	after	application	of
	species, the ta	arget sh	ould b	e minin	nally	additional c	orrective	e measures.	
	low (to be spec	cified by	the Co	onsultan	t for				
	particular spec	ies group	os).						

The performance indicators results will be determined and compiled in quarterly reports, as indicated in the following section.

Reports

Table 9.22 summarizes the documental records that will be kept, to control the execution of this monitoring and management program.

Document Title	Document Type	Frequency of Report
Invasive species monitoring report	Report	Semi-annually (twice per year)
IUCN flora species	Report	Quarterly
Baseline Report. Monitoring Report and		
Management Report of impacts on natural		
and critical natural habitat, on both flora	Report	Semi-annually
and fauna (deforestation rates and wildlife		
poaching activities)		
Polyboroides typus, mortality monitoring	Report	Quarterly
report		

Table 9.22: Record Documents for the Biodiversity Management Program

9.4.5 Community Health and Safety Management Plan

Objectives

The construction of the proposed Project could result in the increase of community health and safety hazards, due to increased light, noise and dust emissions, increased traffic, workforce mobilization, population influx

and security personnel. Management of these risks will require implementation of the mitigation measures proposed in the chapter seven of this report regarding these issues, which are compiled in this Community Health and Safety Management Plan.

Scope and Responsibilities

The Project Implementation Unit (PIU) is the ultimate responsible party for the implementation of all mitigation and management measures. Note that much of the mitigation will involve a strong participation of the Contractor, through the development of additional management plans and the management of day to day activities in the field, as detailed here. However, the PIU will continuously guide and supervise the Contractor, in all issues that are related to engagement with communities and minimization of impacts on their health and safety.

Proposed Actions and Implementation Schedule

Table 8.23 presents the main actions for the implementation of the Community Health and Safety Management Plan.

Actions	Description	Implementation	Responsibility	Supervision
		Schedule		
Minimize	• The Contractor will develop, and submit for	Preconstruction	Contractor	
hazard risk to	PIU approval, an updated Traffic	Phase		PIU
communities	Management Plan, detailing the			
from Project	management procedures and mitigation			
traffic	measures to minimize traffic related hazard			
	risks to communities. The Plan will include			
	the mitigation provided here under:			
	• Movement of construction vehicles shall be			
	limited to pre- approved construction routes.			
	These will be defined in order to avoid			

Table 9.23: Community Health and Safety Management Plan actions, description and implementation schedule

	crossing residential areas, schools or			
	hospitals whenever feasible;			
	• Speed limits not exceeding 30 km/h will be			
	set for construction heavy vehicles moving in			
	unavoidable sensitive receptors (schools,			
	hospitals and homes) and 60km/h on paved			
	roads. Drivers shall be trained on set speed			
	limits and safe driving.			
Minimize	• Install temporary official traffic signs on	Preconstruction	Contractor	PIU
hazard risk to	local roads around the work fronts before and	Phase		
communities	during the execution of the works together			
from Project	with local transit authorities;			
traffic	• Consult with community on traffic			
	restrictions and schedule, provide alternative			
	connectivity where needed, and conduct			
	regular driver and community traffic safety			
	awareness programs;			
	• Use manned traffic control in key			
	sensitive areas and crossings especially near			
	any places where people in general and			
	children in particular congregate;			
	• Manage traffic and machinery to avoid			
	accidents involving domestic animals and			
	cattle. Provide for animal crossings and			
	access to watering sites, if needed.			
	• Reroute traffic or limit access if needed,			
	in coordination with communities and local			
	authorities.			

Minimize noise	• Construction activities, in particular the	During	Contractor	PIU
nuisance on	noisier ones, will be limited to the daytime	Construction		
communities	period (between 08:00 and 05:00) and to			
	working weekdays, avoiding working during			
	the night-time and on weekends, whenever			
	near residential areas;			
	• The contractor will avoid placing fixed			
	equipment in proximity to sensitive receptors;			
	• Use of portable screens during substations			
	construction if situated near inhabited places,			
	where possible;			
	• If noise complaints are received from local			
	communities in the morning or evening			
	periods, despite compliance with the			
	previous measures, and if the following			
	investigation confirms the noise impact, then			
	further reduce the work schedule in those			
	periods. In such cases, the work schedule			
	will be defined in a participatory manner,			
	through consultation with affected			
	communities;			
Ensure good	• The Contractor will develop and implement a	Planning and	Contractor	PIU
practices in	Local Recruitment and Working Conditions	During		
labor	Plan, which will include the following principles	:Construction		
management	• Create mechanisms to ensure that the	è		
and minimize	recruitment and hiring procedures are	è		
risks of social	conducted in a transparent and just manner	3		
conflicts with	are coordinated with the community leaders	5		
workforce	and LGA Administration, maximize loca	I		

	employment including women and young
	workers and transfer technical skills to the local
	labor force;
	Forbid workers from hunting or buying bush
	meat. Inform workers of these restrictions in
	the induction sessions and enforce and
	monitor them appropriately
	Give priority to hire local workers, provided
	applicants have the necessary skills;
	Employment opportunities will be adequately
	advertised, so as not to limit application
	opportunities;
Ensure good	• The process of contracting staff will be Preconstruction Contractor PIU
practices in	transparent and follow pre- established and and During
labor	accepted criteria and a process coordinated Construction
management	with local leaders that aims to maximize
and minimize	opportunities for the local workforce;
risks of social	 Avoid hiring at the gate – establish local and
conflicts with	regional recruitment centers and provide pick
workforce	up points for applicants from communities;
	 Ensure respect for local labor laws and worker
	rights, and together with the labor policy,
	Health and Safety Management Plan, ensure
	safe and fair working conditions;
	 Develop and implement a worker's grievance
	management system.
	Policy and sanctions against violence or
	exploitation, including of a sexual nature (for
	example the prohibition of the exchange of
	money, employment, goods, or services for

	sex, including sexual favors or other forms of
	humiliating, degrading or exploitative
	behavior);
	Protection of children (including prohibitions
	against abuse, defilement, or otherwise
	unacceptable behavior with children, limiting
	interactions with children, and ensuring their
	safety in project areas);
	 Policy and sanctions against sexual relations
	with anyone under the age of 18 (except if
	married prior to employment);
	Description of disciplinary measures for
	infringement of the code and company rules. If Preconstruction Contractor PIU
	workers are found to be in contravention of the and During
Minimize risks	CoC, which Contractor will explain to them and Construction
of social	require them to sign at the commencement of
conflicts with	their contract, workers must face proportionate
workforce	disciplinary procedures;
	 Failure to keep by these standards will be
	stated in the contracts as grounds for contract
	termination. Inform all hired workers of these
	restrictions and the possible consequences of
	breaking them.
	The Contractor will further be expected to:
	Publicize the CoC in settlements potentially
	around the project area. This will help ensure
	that the local residents are aware of the
	expected behavior of the construction staff;
	 Provide schedule and transportation that
	allows workers to visit their families or to have

	 leisure time in urban centers at reasonable intervals. The Contractor will require its subcontractors to subscribe and adhere to this code and will diligently supervise its implementation at all levels, including engaging the community in confidentially and actively identifying any inappropriate behavior. 	
GBV/SEA prevention and response framework	 PIU and the Contractor will work together to Preconstruction Contractor continuously assess risks and identify and and During implement prevention, response and referral Construction processes with respect to any cases involving Sexual Exploitation and Abuse / Gender Based Violence (SEA/GBV). This will focus on: training of PIU and Contractor personnel, (ii) community and worker awareness, (iii) making available safe and confidential channels of communication and complaints, and (iv) a referral system and mechanism for survivors of GBV/SEA; PIU will develop and implement a GBV/SEA prevention and response framework that will address the following elements: How the project will put in place the necessary protocols and mechanisms to address the SEA/GBV risks; How to address any GBV incidents that may arise; 	PIU

Geomatics Nigeria

	A policy against GBV/SEA including a CoC and			
	agreed sanctions. These will be provided by			
	the contractor and consultants as part of the			
	Contractor ESMP. Have all employees of			
	contractors (including sub-contractors),			
	supervision consultants and other consultants			
	with a footprint on the ground in the project			
	area sign CoCs;			
	• For purposes of the construction and			
	operational phases of the project, develop an			
	induction program, including a CoC, for all			
	workers directly related to the project.			
	Specific arrangements for the project by which			
	GBV risks will be addressed, including:			
	• Awareness Raising Strategy, which describes			
	how workers, local communities and Project			
	personnel will be sensitized to SEA/GBV risks,			
	and the worker's responsibilities under the			
	CoC;			
GBV/SEA	• Referral Pathway: Identification of qualified			
prevention and	GBV service providers (NGOs) and setting up	Prior to	Contractor	PIU / Third
response	a referral pathway so GBV survivors will be	mobilization of		party auditor
framework	referred, and the services will be available	construction		per Action
	(health, legal, psychosocial, safety planning,			Plan
	etc.);			
	• Establish a SEA/GBV Accountability and			
	Response Framework, to be finalized with			
	input from the contractor, which will include at			
	minimum:			

Allegation Procedures: How the project will		
provide information to employees and the		
community on how to report cases of		
SEA/GBV, CoC breaches to the GRM;		
SEA/GBV Allegation Procedures to report		
SEA/GBV issues to service providers, and		
internally for case accountability procedures		
which will clearly lay out confidentiality		
requirements for dealing with cases;		
Mechanisms to hold accountable alleged		
perpetrators associated to the Project;		
• Disciplinary action for violation of the CoC by		
workers. It is essential that such actions be		
determined and carried out in a manner that is		
consistent with local labor legislation and		
applicable industrial agreements;		
• The supervision consultant TOR and the		
training plan will include provisions to promote		
monitoring and reporting on the		
implementation and effectiveness of the		
SEA/GBV Action Plan to prevent and mitigate		
SEA/GBV risks associated with the project;		
• Reporting on the Framework implementation		
will be done on a monthly basis.		
Contractor will develop a Security		
Management Plan, detailing the security		
arrangements to be deployed at lay down		
areas and construction sites, or any location		
with Project presence. This plan will be		

Minimize	compliant with AfDB operational safeguards			
community	(see chapter 2)	Planning	Contractor	PIU
security	• This plan will include mandatory training for all	During		
hazards due to	security personnel, in what regards human	Construction		
interaction with	rights, proportionate force use and adherence			
security	Co contractor's code of conduct;			
personnel	• Security will be supplied by NCSDC; PIU will			
	make an effort to engage with the authorities,			
	so that the any engagement with the			
	communities is in compliance with the			
	Voluntary Principles on Security and Human			
	Rights.The Contractor will develop a policy and			
	management plan to reduce the transmission			
	of STIs, including HIV / AIDS. This strategy will:			
	Make provision for awareness, counselling and			
	testing for all Project personnel, including			
	voluntary testing for STDs and HIV/AIDS as			
	part of any health screening program (workers			
	will not be denied employment or discriminated			
	against in any way based on their HIV status);			
	• Provide guidance and counselling to workers			
	with HIV/AIDS to access treatment through			
	existing health facilities or NGO campaigns or			
	programs;			
	• Ensure that all Project personnel are given			
	specific HIV and STD prevention training;			
	• Undertake information, education and			
	communication campaigns around safe sexual			
	practices and transmission of STDs and			
	HIV/AIDS as well as condom distribution at			

stopping locations on key transport routes		
targeting commercial sex workers and truck		
drivers;		
Support public health or NGO initiatives to		
reduce STD transmission including working		
through schools, women's and youth groups;		
The Contractor will provide non-local workers		
with a schedule and transportation that avoids		
limiting off-time activities at nearby		
communities;		
 Conduct community awareness campaigns in 		
communities crossed by the line		

Actions	Description	Implementation	Responsibility	Supervision
		Schedule		
	• The Contractor will develop a policy and			
	management plan to reduce the transmission of			
	STIs, including HIV / AIDS. This strategy will:			
	• Make provision for awareness, counselling and			
	testing for all Project personnel, including			
	voluntary testing for STDs and HIV/AIDS as part			
	of any health screening program (workers will not			
	be denied employment or discriminated against in			
	any way based on their HIV status);			
	Provide guidance and counselling to workers with			
	HIV/AIDS to access treatment through existing			
	health facilities or NGO campaigns or programs;			
	• Ensure that all Project personnel are given			
	specific HIV and STD prevention training;			

Minimize	• Undertake information, education and			
workforce and	communication campaigns around safe sexual	During	Contractor	EDM
community	practices and transmission of STDs and HIV/AIDS	Construction		
health risks	as well as condom distribution at stopping			
	locations on key transport routes targeting			
	commercial sex workers and truck drivers;			
	• Support public health or NGO initiatives to reduce			
	STD transmission including working through			
	schools, women's and youth groups;			
	• The Contractor will provide non-local workers with			
	a schedule and transportation that avoids limiting			
	off-time activities at nearby communities;			
	• Conduct community awareness campaigns in			
	communities crossed by the line			

9.4.6 Traffic Management Program

Justification and Objectives

The Project is expected to generate relatively high volumes of traffic during the initial decommissioning and construction phases of the project. It is therefore important to ensure that traffic is managed in a manner that facilitates efficiency as well as ensuring the safety of personnel and the local community. The vehicular traffic generated as a result of the Project not only requires management on Site itself, but also insofar as traffic impacts may be experienced along local road networks and in urban/residential areas. The outline TMP has also been prepared for the purpose of identifying appropriate and safe methods of access for decommissioning and construction traffic to the proposed development.

Objectives of TMP

The objectives of this outline TMP are to:

Outline minimum road safety measures to be undertaken at site access/exit locations, during the works and including approaches to such access/egress locations;

Demonstrate to the developer, contractor and supplier the need to adhere to the relevant guidance documentation for such works; and

Provide the basis for the preparation of a final TMP by the contractor appointed to carry out the works.

The PIU shall be responsible for ensuring that the contractor manages the decommissioning and construction activities in accordance with this outline TMP. The contractor will prepare a final TMP which is fully in accordance with the outline TMP.

Objectives and measures are also included for the management, design and construction of the project to control the traffic impacts of construction insofar as it may affect the environment, local residents and the public in the vicinity of the construction works.

The final TMP will address the requirements of any relevant planning conditions, including any additional mitigation measures which are conditioned by the Board

Traffic Management Signage

The contractor shall undertake consultation with the relevant authorities for the purpose of identifying and agreeing signage requirements. Such signage shall be installed prior to works commencing on site.

Proposed signage may include warning signs to provide warning to road users of the works access / exit locations and the presence of construction traffic. All signage shall be provided in accordance with the Nigerian Highway Code Part 2, Section B - road signs, signals, and markings

In summary, the contractor will be required to ensure that the following elements are implemented:

- Consultation with the relevant authorities for the purpose of identifying and agreeing signage requirements;
- Provision of temporary signage indicating site access route and locations for contractors and associated suppliers; and
- Provision of general information signage to inform road users and local communities of the nature and locations of the works, including project contact details.

Programming

In order to reduce impacts on local communities and residents adjacent to the proposed sites, it is proposed that:

- The contractor will be required to liaise with the management of other construction projects and the local authorities to co-ordinate deliveries.
- The contractor will be required to schedule deliveries in such a way that decommissioning/construction
 activities and deliveries activities do not run concurrently e.g. avoiding pouring of concrete on the same
 day as material deliveries in order to reduce the possibility of numbers of construction delivery vehicles
 arriving at each tower location simultaneously, resulting in build-up of traffic on road network..
- The contractor will be required to schedule deliveries to and from the proposed temporary construction lay down area such that traffic volume on the surrounding road network is kept to a minimum.

Decommissioning/ construction phase programme of works shall be developed by the contractor in liaison with the relevant local authorities, specifically taking into account potential road repair works that are included in the FRSC road works schedule. In particular, works should be programmed where possible such that any road works are carried out following the presence of construction traffic for the proposed development.

Heavy Duty trucks deliveries to the development site will be suspended on the days of any major traditional festivals that have the potential to cause larger than normal traffic volumes.

The contractor will be required to interact with members of the local community to ensure that deliveries will not conflict with sensitive events such as traditional festivals.

Heavy Duty trucks (HDT) deliveries will avoid passing schools at opening and closing times where it is reasonably practicable.

Construction activities will be undertaken during daylight hours for all construction stages. It is not anticipated that construction works will be carried out on Friday or that any construction works will be carried out in hours of darkness.

Licensing

The PIU and contractor shall ensure that:

All Project vehicles comply with relevant traffic and transport licensing requirements (such as with regard to licensing requirements relating to the transportation of over-sized loads or hazardous materials, including hazardous waste).

All drivers of vehicles used during the Project shall have the requisite licenses to operate any vehicle (or machinery) operated by them on Site or on any public roads.

All Project vehicles shall have valid roadworthy certificates and licenses.

Routing and direction of traffic and site access

The movement of all vehicles to and from Site shall be along designated Federal roads, state roads and site access roads. Most materials for the construction works shall be transported from the Lagos port down to the project site. The distance between these locations is about 1,132 km on the average. The most appropriate route for large Project vehicles (such as HDT, Light Duty Trucks and buses) transporting equipment, materials and employees (along public roads) to and from the Site shall be determined by the contractor and PIU in consultation with the FRSC, local road traffic authorities and the local community. A copy of the approved routes must be maintained on Site together with this Plan (this is the responsibility of the Contractor and his Site Manager).

Any anticipated or scheduled traffic delays occasioned by Project vehicles (such as abnormal loads, i.e. the transformers) shall be coordinated with FRSC and local traffic authorities in advance.

Recommended Traffic Management Speed Limits

Adherence to posted/legal speed limits will be emphasized to all staff/suppliers and contractors during induction training.

Drivers of construction vehicles/HDTs will be advised that vehicular movements in sensitive locations, such as local community areas, shall be restricted to 60 km/h. Special speed limits of 30 km/h shall be implemented for construction traffic in sensitive areas such as school locations. Such recommended speed limits will only apply to construction traffic and shall not apply to general traffic. It is not proposed to signpost such speed limits in the interest of clarity for local road users.

Road Cleaning

It shall be a requirement of the works contract that the contractor will be required to carry out road sweeping operations to remove any project related dirt and material deposited on the road network by construction/delivery vehicles. Road Sweepers will dispose of material following sweeping of road network, to licensed municipal waste facility around the site.

Vehicle Cleaning

It shall be a requirement of the works contract that main contractor will be required to provide wheel washing facilities, and any other necessary measures to remove mud and organic material from vehicles exiting tower construction sites. In addition, the cleaning of delivery trucks such as concrete delivery trucks shall be carried out at the lay down area and shall not be undertaken at the tower site locations.

Road Condition

The extent of the heavy vehicle traffic movements and the nature of the load may create problems of: Fugitive losses from wheels, trailers or tailgates; and Localized areas of subgrade and wearing surface failure.

The contractors shall ensure that:

Loads of materials leaving each site will be evaluated and covered if considered necessary to minimize potential dust impacts during transportation.

The transportation contractor shall take all reasonable measures while transporting waste or any other materials likely to cause fugitive loses from a vehicle during transportation to and from site, including but not limited to: (i) Covering of all waste or material with suitably secured tarpaulin/covers to prevent loss; and (ii) utilization of enclosed units to prevent loss.

The roads forming part of the haul routes will be monitored visually throughout the construction period

In addition, the contractor shall, in conjunction with the PIU:

Undertake additional inspections and reviews of the roads forming the haul routes one month prior to the construction phase to record the condition of these roads at that particular time.

Such surveys shall comprise, as a minimum, a review of video footage taken at that time, which shall confirm the condition of the road corridor immediately prior to commencement of construction. This shall include video footage of the road wearing course, the appearance and condition of boundary treatments and the condition of any overhead services that will be crossed. Visual inspections and photographic surveys will be undertaken of bridges and culverts that are along the haul roads.

Where requested by the local authority prior to the commencement of construction operations, pavement condition surveys will also be carried along roads forming part of the haul route. These will record the baseline structural condition of the road being surveyed immediately prior to construction.

Throughout the course of the construction of the proposed development, ongoing visual inspections and monitoring of the haul roads will be undertaken to ensure any damage caused by construction traffic is recorded and that the relevant local authority is notified. Arrangements will be made to repair any such damage to an appropriate standard in a timely manner such that any disruption is minimized.

Upon completion of the construction of the proposed development, the surveys carried out at pre-construction phase shall be repeated and a comparison of the pre and post construction surveys carried out. Where such comparative assessments identify a section of road as having been damaged or as having deteriorated as a result of construction traffic, the road will be repaired to the pre-construction standard or better by the TCN.

Road Closures

During the course of the works, it is not envisaged that road closures will be required. In areas where existing carriageways are narrow, it is envisaged that Traffic Management measures such as temporary traffic lights will be utilized to facilitate traffic. It is envisaged however that temporary road closures will be required at guarding locations for the purpose of removal following construction. The most notable of these temporary road closures will be on the Aba – Port Harcourt express way, Umuikaa – Owerri, and Owerri – Onitsha express Way. These closures will be short in duration, with road closure times and appropriate measures to be agreed with the FRSC and other relevant stakeholders prior to the removal of guarding. It is envisaged that road closures will be undertaken during nighttime when traffic volumes are at their lowest, subject to agreement with the FRSC and other relevant stakeholders.

Enforcement of Traffic Management Plan

All project staff and material suppliers will be required to adhere to the final TMP. As outlined above, the principal contractor shall agree and implement monitoring measures to confirm the effectiveness of the TMP and compliance will be monitored by the resident engineer on behalf of TCN. Regular inspections/spot checks will also be carried out to ensure that all project staff and material supplies follow the agreed measures adopted in the TMP.

Geomatics Nigeria

ESIA REPORT FOR THE PROPOSED RECONSTRUCTION OF ALAOJI-ONITSHA 330kV DC QUAD CORE TRANSMISSION LINE

Details of Working Hours and Days

Construction of the proposed development is envisaged to be undertaken during daylight hours for all construction stages besides it is expected that the EPC with all his sub Contractors in collaboration with the Client and the communities around the project sites shall be having regular meetings strictly for management of the ptoject sites and the people around them if project activities would involve noise, traffic obstruction/disruption,walk way obstruction, production of dust and wastes, long periods outages, etc. This meetings shall be commence immediately after the kick off meeting and site hand over to the EPC...It is not anticipated that construction works will also be carried out on Sundays, or Bank Holidays or that any construction works will be carried out in hours of darkness.

Pedestrian and Passenger Safety

All construction personnel transported to and from the Site shall be safely accommodated in appropriate passenger vehicles. No employee shall be transported on the back of open trucks. The Contractor's Construction Safety Officer shall ensure that this requirement is adhered to at all times.

All vehicles transporting employees shall be appropriately maintained and shall not carry more passengers than the number of persons for whom seating accommodation is provided.

Assembly points for local construction workers embarking passenger vehicles shall be located a safe distance from areas/routes of high vehicle traffic. Those residing in hotels shall be picked up daily from their various hotels. Roads and areas used by construction vehicles shall, as far as possible be avoided by all personnel. Designated pedestrian routes shall be demarcated where appropriate.

Vehicle and pedestrian safety shall be emphasized in the Safety Induction Training required to be provided by the Contractor.

All employees and construction personnel shall be trained and informed as to the dangers and risks posed by construction and other traffic, such training shall also include appropriate precautionary measures required to be undertaken to facilitate safe and efficient traffic management (e.g. checking for traffic before crossing roadways and utilizing designated pedestrian routes).

Drivers shall be adequately trained in the recognition and avoidance of road hazards, vehicle maintenance, safety requirements and comply with the FGN Highway code.

Emergency Procedures During Construction

- The contractor shall ensure that unobstructed access is provided to all emergency vehicles along all routes and site accesses at what speed limit?
- The contractor shall provide to the local authorities and emergency services, contact details of the contractor's personnel responsible for construction traffic management.

In the case of an emergency the following procedure shall be followed:

- Emergency Services will be contacted immediately by dialing 555;
- Exact details of the emergency/incident will be given by the caller to the emergency line operator to allow them to assess the situation and respond in an adequate manner;
- The emergency will then be reported to the Site Team Supervisors and the Safety Officer;
- All construction traffic shall be notified of the incident (where such occurs off site);
- Where required, appointed site first aiders will attend the emergency immediately; and
- The Safety Officer will ensure that the emergency services are en route.

Communication

Client –Contractor –Donor and media-creation of sensitization communication. The contractor shall ensure that close communication with the relevant local authorities and the emergency services shall be maintained throughout the construction phase. Such communications shall include:

- Submissions of proposed traffic management measures for comment and approval;
- On-going reporting relating to the condition of the road network and updates to construction programming; and
- Information relating to local and community events that could conflict with proposed traffic management measures and construction traffic in order to implement alternative measures to avoid such conflicts.

The contractor shall also ensure that the local community is informed of proposed traffic management measures in advance of their implementation. Such information shall be disseminated by sensitization in the way and manner best comprehensible by the affected community using the liaison personnel.

Decommissioning and Construction Methodologies

- The contractor shall take cognizance of the construction methodology as detailed in chapter four of this
 report in the preparation of the final TMP. In particular, the contractor shall address the following
 construction elements in the development of the plan:
 - Decommissioning and dismantling works
 - Tower Foundations;
 - Tower Assembly and Erection
 - Conductor / Insulator Installation (Stringing of Overhead Lines) including Guarding provision and removals; and
 - Reinstatement of Lands.
- The contractor shall provide detailed traffic management arrangements for all construction stages and submit for approval to the relevant local authorities and the FRSC.
- The contractor shall submit for approval to the TCN and to the Local Authority, as part of their final TMP, details in relation to construction staff vehicle pooling and parking.
- This Traffic Management Plan (TMP) will form part of the construction contract and is designed to reduce possible impacts which may occur during the construction of the proposed development.
- The outline TMP shall be used by the appointed contractor as a basis for the preparation of a final TMP and shall detail, at a minimum, the items detailed in this outline TMP and any subsequent requirements of the FRSC and local authorities.
- TCN's PIU shall be responsible for ensuring that the contractor manages the construction activities in accordance with this outline TMP and shall ensure that any conditions of planning are incorporated into the final TMP prepared by the appointed works contractor.

CHAPTER TEN CONCLUSION

10.1 Conclusion

The Environmental and Social Impact Assessment (ESIA) of the proposed project has been carried out in line with statutory requirements for environmental management in Nigeria and as such ensures that potential environmental, social and health impacts of the project are fully appraised. This ESIA report has documented the existing environment of the area, potential and associated impacts of the proposed project, proffered cost-effective mitigation/ ameliorative measures for impacts and enhancement measures for the beneficial impacts. A management plan that would be effective throughout the project's life cycle has also been put in place to assure environmental sustainability of the project.

The environmental baseline condition of the project area which was carried out based on a one season (wet) data, supplemented with dry season secondary data (Ukanafun –Oma Power Gas Plant Project, 2014) showed that the physical, chemical and biological characteristics as well as meteorological, climatic and hydrological characteristics were generally consistent with previous studies carried out within the environment with some few exceptions. Also documented were unique assemblages of wild flora and fauna species with abundances that relate to the nutrients and chemical composition of the ecosystems.

The identified adverse impacts of the proposed project include potential; air and noise pollution, soil, sediment, groundwater water and surface water contamination from accidental discharges of effluent, workplace accidents, traffic, community conflict, migratory and raptor avian species, IUCN plant species. Consequently, cost-effective mitigation/ amelioration measures have been designed to ensure that these impacts are prevented, reduced or controlled to as low as reasonably practicable in order to ensure conservation of biodiversity in the area and enhance continual compliance with environmental standards and requirements in Nigeria. It is understood that the project will result in substantial social and economic benefit for Nigeria. The EMP developed would ensure the plans/ procedures for managing the significant impacts of the project are maintained throughout the project implementation.

Socio-economic consultations with the project host communities and other relevant stake holders were also carried out and shall continue throughout the life cycle of the project

It is therefore hoped that all data/evidence contained in this report is sufficient in the development of an environmental impact statement (EIS), and afterward in the acquiring of necessary permits for commencement of project.

418

References

- Adeyemi, A.A., Ibe, A.E. and Okedimma, F.C. (2015). Evaluation of Tree Species Diversity in OkwangwoForest, Cross River State, Nigeria. Journal of Research in Forestry, Wildlife and Environment 7(2): 36-53. Published by the College of Forestry and Fisheries, University of Agriculture, Makurdi, Nigeria. Adegoke Wahab, (2012)
- Ajibade, A. C. (1983) Structural and Tectonic Evolution of the Nigerian Basement with Special reference to NW Nigeria, in Benin Nigeria Geotraverse.
- Akobundu, 1. O. and C. W Agyakwa. 1998. A Handbook of West African Weeds. Ibadan, Nigeria: International Institute of Tropical Agriculture. p. 162 Arbonnier 2006
- Begon, M., Harper L.J. & Townsend C.R. (1986). *Ecology: Individuals populations and communities:* Sunderland, Blackwell Scientific publications Blinn, D.W and Bailey, C.E. (2001). Land-use influence on stream water quality and diatom communities in Victoria, Australia: a response to secondary salinization. *Hydrobiologia*.466:231–244, 2001.
- Chukwu, O., Sunday, E., Ajisegiri, E., Onifade, K and Jimoh, O (2007) Environmental impact auditing of food processing industry in Nigeria: the case of climate and air quality
- Clucas, I. J. and Sctcliffe, P.J. (1987). An introduction to fish handling and processing. Report of the Tropical Products Institute, pp 143-186.
- Derek, H. and Oguntoyinbo, L. 1983. Climatology of West Africa. Published by Hutchinson, London etc
- Edet.A.E. (1993). Groundwater quality assessment in parts of Eastern Niger Delta, Nigeria. *Environmental Geology*. 22 (<u>1</u>): 41–46
- Ebigwai J. K, Edu E.A., Umana E.E., Agaigho A (2012) In Vitro Evaluation of the Essential oil extract of six plant species and Ivermectin on the microfilaria larva of Simuliumyahense.Research Journal of Medicinal Plants6(6):461-465
- FDALR (1990) Literature review of soil fertility investigation in Nigeria. Publication of the Federal Department of Agriculture and Land Resources, Lagos, Nigeria, 2, 116-158.
- Fowler, D.W., Fredman, E.A., & Scsndella, J.B. (2009) Predatory Functional Morphology in Raptors: Interdigital Variation in Talon Size is Related to Prey Restraint and Immobilization Technique, *PLoS One*4(11): e7999.

- Gauch Jr., H.G. (1982) Multivariate Analysis in Community Ecology. Cambridge University Press, Cambridge, 298 p.
- Hawthorne, W.D. (1993) Forest regeneration after logging in Bia South GPR, Ghana O.D.A. Forestry Series 3.
- Hoppenrath, M. and Saldarriaga, J.F. (2012). Dinoflagellates in The Tree of Life Web Project. Retrieved July 31, 2014 from http://tolweb.org/Dinoflagellates/2445/2012.12.15a231-244.
- Hutchinson, J. and Dalziel, J.M. (1972), Flora of West Tropical Africa, Crown of Agente of the Colonies, London, pp 646
- ICNIRP, Static and Low Frequency Review –2003.ISBN 978-3-934994-03-4.EUR 30,00
- IUCN 2019- International Union for Conservation of Nature
- Nigeria Demographic and Health Survey, 2008
- Nigerian Bureau of Statistics (2012) Annual Report of Statistics
- NIMET, 2005- Nigerian Meteorological Agency
- Nnamdi Anyadike, 2002. Lead and Zinc Threats and Opportunities in the Years Ahead 1st Edition
- Nyannanyo B.L, (2006) Plants from the Niger Delta. Onyoma Research Publications, Port Harcourt and Rivers State.p:403
- Odugbemi, T., (2006). Medicinal Plants as Antimicrobials In: Outline and pictures of medicinal plants from Nigeria. University of Lagos Press, 53-64.
- Ojanuga, A.G., Lekwa, G. and Akamigbo, F.O.R. (1981). Survey Classification and Genesis of Acid sands of Southern Nigeria.SSSN Monography No1.Pp1-18.
- Orawski Eurlng, BSc (Eng) Hons, CEng, FIEE, in *Electrical Engineer's Reference Book (Sixteenth Edition)*, 2003
- Powell T.C (1993). Administrative Skill as Competitive Advantage Extending Porter's Analytical Framework.*Canadian Journal of Administrative Science*.https://doi.org/10.1111/j.1936-4490.1993.tb00023.x
- S.M.A. Adelana & A.M. MacDonald 2008. An overview of the geology and hydrogeology of Nigeria
- Souane. 1985. Manual of Dendrology, Cameroon. Group Poulin, TheriaultItee. 3350 Boul, Wilfrid, Hamel: Quebec, Canada

- Sridhara, N & Kamala, C.T & Dasary, Samuel. (2008). Assessing Risk of Heavy Metals from Consuming Food Grown on Sewage Irrigated Soil and Food Chain Transfer. *Ecotoxicology and environmental safety*. 69. 513-24. 10.1016
- UNEP, 2011. Guidelines For Mitigating Conflict Between Migratory Birds and Electricity Power Grids.
- Veen, F.M., van der Molen M.W., Sahibdin, P.P., Franken, I.H.A. (2014) The Heartbreak of social rejection versus de brain wave of social acceptance. Social, Cognitive, and Affective Neuroscience.2014; 9:1346–51.
- White, L. J. T. & Abernethy, K. A. (1997). A guide to the vegetation of the Lope Reserve, Gabon. New York: Wildlife Conservation Society.

APPENDICES

Appendix 1.4

Terms of Reference by FMEnv

FEDERAL MINISTRY OF ENVIRONMENT

Environment House Independence Way South, Central Business District, Abuja - FCT.

Email:ea@ead.gov.ng, www.ead.gov.ng

ENVIRONMENTAL ASSESSMENT DEPARTMENT

FMEnv/EA/EIA/5096/Vol. 1/47 16th August, 2019.

The Managing Director/CEO, Transmission Company of Nigeria, Plot 441, Zambezi Crescent, Maitama, Abuja, FCT.

RE: ENVIRONMENTAL IMPACT ASSESSMENT (EIA) FOR THE PROPOSED NIGERIA TRANSMISSION EXPANSION PROJECT (NTEP) LOT-2 RECONSTRUCTION OF ALAOJI-ONITSHA TRANSMISSION LINE, ABIA, ANAMBRA & IMO.

Please refer to your letter dated 13th May, 2018.

2. The Ministry has reviewed the scoping report and Terms of Reference for your proposed project and made some additions to the Environmental Baseline Studies (EBS) as reflected below:

- Mitigation measures/plan for workers influx and camp management.
- Measures to prevent gender based violence (GBV), sexual exploitation and abuse
- Labour management plans
- Estimate of areas to be deforested in hectares
- Socio-economic and asset inventory surveys for resettlement impacts and RAP formulation
- Preparation of a Resettlement Action Plan (RAP) to address any land acquisition and displacement impacts.

3. The additions in paragraph Two (2) above and the other contents of your revised ToR will be considered as the minimum content of the EIA studies.

4. The Environmental Baseline Studies shall be witnessed by officials of the Ministry. The Environmental Baseline Studies should be in line with International Best Practices.

5. The laboratory analysis of the samples must be carried out in an FMEnv accredited Laboratory and witnessed by officials of the Ministry. You are also to ensure full quality assurance/quality control (QA/QC) measures for the laboratory analysis in line with standard practices and notify the Ministry in good time to enable adequate participation in the exercise.

.

ESIA REPORT FOR THE PROPOSED RECONSTRUCTION OF ALAOJI-ONITSHA 330kV DC QUAD CORE TRANSMISSION LINE

- Evidence of accreditation by Federal Ministry of Environment for the Laboratory where the sample analysis would be carried out.
- Chain of Custody.
- Certificate of Analysis duly stamped and signed by the Laboratory Manager.
- Evidence of Laboratory witnessing by the Federal Ministry of Environment.

7. Upon completion of the EIA studies, the proponent are to submit to the Ministry Ten (10) hard copies along with two (2) electronic copies of the draft EIA report and also email a copy to <u>eia@ead.gov.ng</u>

8. Thank you for your co-operation.

Abbas O. Suleiman For: Honourable Minister

Appendix 3.1

Applicable Codes and Standards

In general, the TCN Standard applies for the Transmission line and is herein referred to. The following Standards are excerpts from the PHCN standards:

Quality Assurance and Safety

• Local Norms, Rules and Regulations for Health, Safety and Environmental Protection; Environmental Guidelines and Standards for Petroleum Industry in Nigeria, Ministry of Petroleum Resources- "Revised Edition 2002";

- Workmen's Compensation Decree/1987;
- Electrical Regulations/1988.
- Land Use act of 1998
- Power Reform Decree of 2005

• BS EN ISO 9001 Quality System – Model for Quality Assurance in Design, Development, Production, Installation and Servicing Safety Management

- OHSAS18001:2007 Occupational Health and Safety Management Systems Requirements;
- ISO9001:2008 Quality management systems: Requirements
- ISO14001:2004 Environmental management systems: Requirements with guidance for use;
- ICAO International Civil Aviation Organisation Annex 14Civil
- ACI 301 Specifications for Structural Concrete for Buildings
- ACI 318 Building Code Requirements for Reinforced Concrete
- ACI Committee 543 title no. 70-50 1974 "Recommendations for Design, Manufacture, and Installation of Concrete Piles".
- BS 4-1 1993 Structural steel sections. Part 1. Specification for hot rolled sections
- BS 12 1996 Specification for Portland cement

• BS 410-1 2000 Test sieves –Technical requirements and testing Part 1- Test sieves of metal wire cloth, Part 2- Test sieves of perforated metal plate

• BS 812 Part 100 Testing aggregates, General requirements for apparatus and calibration, Part 101 Guide to sampling and testing aggregates, Part 103.1 Sieve tests, Part 103.2- Sedimentation tests, 105.1 Flakiness index, 105.2 Elongation index of coarse aggregate, Part 106 Determination of shell content, Part 109 Determination of moisture content, Part 110, Determination of aggregate crushing value, Part 111- Ten percent fines value, Part 112- Aggregate impact value, Part 113- Aggregate abrasion value, Part 117- Water soluble chloride salts, Part 118- Determination of sulphate content, Part 119- Determination of acid soluble material in fine aggregate. Part 120- Drying Shrinkage, Part 121- Determination of soundness, Part 123-Determination of alkali silica reactivity, Part 2, Determination of density.

• BS 882 Specification for aggregates from natural sources for concrete

• BS 1014 Pigments for Portland cement and Portland cement products

• BS 1139-1.2 Metal scaffolding Part 1-Tubes, Aluminum tube, Part 2, Couplers, Specification for steel and aluminum couplers, fittings and accessories for use in tubular scaffolding, Part 4, Prefabricated steel splithears and trestles

- BS 1881 All Parts Testing concrete, Method of sampling fresh concrete on site
- BS 3416 Bitumen based coatings for cold application suitable for use in contact

with potable water

- BS 4027 Sulphate resisting Portland cement
- BS 4483 Steel fabric for the reinforcement of concrete
- BS 5075-2 Concrete admixtures- for air entraining admixtures

• BS 5328 Concrete Part 1- Guide to specifying concrete, Part 2- Methods for specifying concrete mixes,

Part 3- Procedures to be used in producing and transporting concrete, Part 4- Procedures to be used in sampling, testing and assessing compliance of concrete.

- BS 5390 Code of practice for site investigations
- BS 8004 Code of Practice for Foundations
- BS 8110 Structural use of concrete Part 1, Part 2 and Part 3.

• BS 8666 Specification for scheduling, dimensioning, bending and cutting of steel reinforcement for concrete.

Mechanical Codes and Standards

- ANSI B18.21.1 Lock Washers
- ANSI B18.5.1 Square and Hex Bolts and Screws
- ANSI B18.2.2 Square and Hex Nuts
- ASCE Manual 10-90 Guide for Design of Steel Transmission Towers
- ASTM-A123 Standard Specification for Zinc (Hot Galvanized) Coatings on products fabricated from
- Rolled, Pressed and Forged Steel Shapes, Bars and Strip
- ASTM-A153 Standard Specification for Zinc Coating (Hot Dip) on Iron and Steel Hardware
- ASTM-A572 Standard Specification for High Strength Low Alloy Columbium- Vanadium Steels of Structural Quality
- ASTM-A325 Standard Specification for High Strength bolts for Structural Steel Joints, including Suitable Nuts and Plain Hardened Washers
- ISO 898-1 Mechanical properties of fasteners, Bolts Screws and Studs
- ISO 630- Structural Steel-plates, wide flats, bars, sections and profiles.
- ISO 7411- Hexagonal bolts for high strength structural bolting with large widths across flats
- ISO 657-5, Hot rolled structural steel sections equal and unequal leg angles
- ISO 7452- Hot rolled structural steel tolerances on dimensions and shapes
- ASTM-A394 Standard Specification for Galvanized Steel Transmission Tower Bolts and Nuts BS 4 Part 1 Structural Steel Sections, Hot Rolled Sections
- BS 729 Hot Dip Galvanized Coatings on Iron and Steel Articles
- BS 1856 General Requirements for the Metal-Arc Welding of Mild Steel
- BS 2642 General Requirements for the Arc Welding of Carbon Manganese Steel
- BS 4360 Weld able Structural Steel
- IEC 61284 Overhead lines- requirements and test for fittings.
- BS 729 Hot Dip Galvanized Coatings on Iron and Steel Articles.
- BS EN 1481 Hot dip galvanized coating on fabricated iron and steel articles,
- specification and test method.

Electrical

• IEC 270 Partial Discharge Measurements

- IEC 61232 Aluminum-Clad Steel wires for Electrical Purposes.
- IEC 60121 Recommendation for commercial annealed aluminum electrical

conductor wire

- IEC 61089 Round wire concentric lay overhead electrical stranded conductors.
- IEC 60889 Hard drawn aluminum wire for overhead line conductors
- IEC 61394 Characteristics of greases of aluminum, aluminum alloy and steel bare conductors.
- IEC 61395 Overhead electrical conductors Creep test procedures for stranded conductors
- IEC 60270 High voltage techniques- Partial Discharge Measurements.
- IEC 61897 Overhead lines Requirements and tests for Stockbridge type aeolian vibration dampers
- · IEC 61894 Overhead lines Requirements and tests for spacers
- IEC /TR 62263 Guidelines for installation and maintenance of optical fibre cables
- IEC 60793 Measurement and test procedures Part 1
- IEC 60794 Optical Fibres Part 1-2, General Specification
- IEC 1232 Aluminum Clad Steel Wire for Electrical purpose
- IEC 60874 Part 0-2 Connector for optical fibres and cables
- IEC 60120 Recommendations for Ball and Socket Couplings of String Insulator Units.
- IEC-60383-1 Insulators for overhead lines with a nominal voltage greater than 1000V. Ceramic or Glass units for ac systems acceptance criteria.

• IEC-60383-2- Insulators for overhead lines with a nominal voltage greater than 1000V. Insulator strings and insulator sets for ac systems test methods and acceptance criteria.

• IEC-60071-2- Insulation Coordination Part 2. Application guide

•IEC 60591 Sampling rules and acceptance criteria when applying statistical control methods for

mechanical and electromechanical tests on insulators of ceramic material or glass for overhead lines with a nominal voltage greater than 1000V.

•IEC-60437 Radio Interference Test on High Voltage Insulators.

•IEC 61467- Insulators for overhead lines with nominal voltage greater than 1kV, power arc test on insulators sets

•IEC 60575- Thermal mechanical performance test and mechanical performance test on string insulator units

- •IEC 60270- Partial discharge measurements
- •IEC-60305 Insulators for overhead lines with a nominal voltage above 1kVCermaic or glass insulators for
- ac systems- characteristics of insulators units of cap and pin type.
- •IEC /TR 62263 Guidelines for installation and maintenance of optical fibre cables
- •IEC 60793 Measurement and test procedures Part 1
- •IEC 60794 Optical Fibres Part 1-2, General Specification
- •IEC 1232 Aluminum Clad Steel Wire for Electrical purpose
- •IEC 61284 Overhead lines- requirements and test for fittings.
- •IEC 60372 Locking device for ball and socket couplings of stringinsulator units.
- •IEC 60672 Specification for ceramic and glass insulating material
- •IEC 60874 Part 0-2 Connector for optical fibres and cables
- •IEC 61211 Insulator of ceramic or glass for overhead lines with a nominal voltage greater than 1000V-

Puncture testing

- •BS 215 Part 1 & 2 Aluminum stranded conductors, steel reinforced
- •BS 3288 Insulator and conductor fittings for overhead power lines.
- •BS 729 Hot Dip Galvanized Coatings on Iron and Steel Articles.
- •BS 443 Specification for zinc coatings on steel wire and for quality requirements
- •BS 183 General purpose galvanized steel wire
- •BS 1559 Reels and drums for bare conductors
- •BS-137 Insulators of Ceramic Material or Glass for Overhead Lines with a nominal voltage greater than 1000 V.
- •BS 3288 Part 1- Part 4. Performance and general requirements for insulators and conductor erhead power lines.
- •BS EN ISO1461 Hot dip galvanized coatings on fabricated iron and steel articles Specifications and test methods
- •BS EN 50189 Conductors and overhead lines Zinc coated
- •BS EN 1481 Hot dip galvanized coating on fabricated iron and steel articles, specification and test method.
- •IEEE Std 524-1980 Guide to installation of overhead Transmission line conductors

- •IEEE 31TP65-156 Standardization of Conductor Vibration Measurements.
- •IEEE 1138 Standard construction of composite fibre optic ground wire
- •IEEE 524a-1993- IEEE Guide to Grounding During the Installation of Overhead Transmission Line

Conductors

- •TU TG 652 & 654 Characteristics of single mode optical fibre and cable
- •IEEE 1138 Standard construction of composite fibre optic ground wire
- •IEEE 812 Standard fibre optics, Definition of terms
- •ITU TG 652 & 654 Characteristics of single mode optical fibre and cable

Appendix 6.1

Air Quality, Noise, and EMF Result

AIR QUALITY							Alaoji-Ih	iala									hiala-Oni	tsha		
(ALAOJI -																				
IHIALA)																				
PARAMETERS	AQ1	AQ2	AQ3	AQ4	AQ5	AQ6	AQ7	AQ8	AQ9	AQ10	AQ11	AQ12	AQ13	AQ14	AQ15	AQ16	AQ17	AQ18	AQ19	AQ20
SO2	0.050	0.009	0.021	0.019	0.024	0.039	0.058	0.054	0.022	0.059	0.087	0.020	0.024	0.042	0.077	0.047	0.022	0.019	0.059	0.047
NO2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO2	404.3	445.8	451.8	460.6	434.4	454.3	426.4	391.7	399.9	428.5	450.2	414.3	456.5	430.6	482.1	431.8	445.3	422.0	414.9	444.2
VOC	0.111	0.159	0.213	0.002	0.255	0.250	0.577	0.344	0.093	0.347	0.283	0.300	0.354	0.294	0.008	0.377	0.316	0.278	0.358	0.303
HCL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CO	2.25	6.87	0.38	11.25	10.73	4.57	6.06	6.96	3.30	1.15	9.17	2.77	5.75	7.65	2.60	1.84	10.23	10.55	6.46	0.72
H2S	2.10	2.20	2.12	1.99	1.56	2.00	1.77	2.26	2.00	1.55	1.98	2.05	1.71	1.68	2.02	1.60	1.92	2.21	1.83	1.98
SPM	0.017	0.175	0.003	0.010	0.103	0.102	0.071	0.145	0.040	0.099	0.035	0.050	0.040	0.026	0.061	0.010	0.051	0.132	0.051	0.023

Noise/ EMF Result

NOISE AND						Ala	aoji-Ihial	а						lhiala-o	nitsha					
EMF																				
PARAMETERS	NQ1/EMF1	NQ2	NQ3	NQ4	NQ	NQ6	NQ7	NQ8	NQ9	NQ	NQ11	NQ12	NQ13	NQ14	NQ	NQ16	NQ17	NQ18	NQ19	NQ
					5/EMF2					10/EMF3					15/EMF4					20/EMF5
Noise dB(A)	56.4	62.1	56.9	61.9	62.0	62.3	65.0	57.8	62.5	60.0	61.6	61.9	55.7	67.6	58.3	58.4	61.6	57.8	60.0	60.9
LAF (dBA)	51.8	61.3	62.3	63.3	67.1	58.1	62.7	69.4	71.3	66.7	69.5	69.5	62.2	66.0	51.0	65.2	62.1	69.8	71.6	75.5
LMIN. (dBA)	23.4	28.6	26.7	25.8	28.1	26.3	31.2	29.9	26.9	26.3	31.6	24.3	29.8	28.0	27.4	24.7	25.2	22.4	28.9	28.6
LMAX. (dBA)	66.1	62.2	65.6	63.2	57.9	66.9	59.5	73.0	64.1	58.1	42.0	57.7	63.8	57.2	61.0	50.9	42.3	59.9	60.3	46.3
EMF	0.28				0.28					0.28					0.26					0.27

Micro-climatic Result (Meteorology)

	MET1	MET2	MET3	MET4	MET5	MET6	MET7	MET8	MET9	MET10	MET11	MET12	MET13	MET14	MET15	MET16	MET17	MET18	MET19	MET20
Wind	5.6	6.9	5.6	5.1	5.7	6.0	5.2	6.4	5.7	6.1	5.3	4.9	6.0	5.0	6.1	5.1	4.8	5.5	5.1	5.3
speed																				
temp	27.4	27.8	26.1	26.6	25.9	26.6	25.0	26.4	27.0	25.6	27.9	27.5	26.4	27.5	25.6	25.9	28.3	26.3	26.6	27.1
(oC)																				
RH (%)	66.5	66.3	65.7	66.5	66.8	65.8	65.9	66.1	65.1	66.3	65.8	66.7	66.1	65.5	66.5	65.5	66.0	65.5	65.3	65.5
Wind	North-																			
direction	east																			

Appendix 6.2

SOIL PHYSICO-CHEMICAL PROPERTIES

(0cm - 15cm)							A	laoji-Ihial	а								lhiala -	Onitsha			
PARAMETERS		SQ1	SQ2	SQ3	SQ4	SQ5	SQ6	SQ7	SQ8	SQ9	SQ10	SQ11	SQ12	SQ13	SQ14	SQ15	SQ16	SQ17	SQ18	SQ19	SQ20
PH		6.67	6.66	6.64	6.59	6.77	6.70	6.70	6.71	6.69	6.67	6.78	6.73	6.87	6.73	6.65	6.77	6.75	6.77	6.77	6.80
Elect.		78.1	84.1	78.9	92.6	83.6	88.2	81.6	91.9	89.9	90.9	82.0	83.1	83.1	82.5	80.1	93.9	93.2	83.8	87.2	84.4
Conductivity																					
(µS/cm)																					
Moisture		13.5	12.7	11.7	10.8	10.6	11.4	9.3	13.4	9.8	6.5	12.0	10.2	10.3	10.6	13.0	9.3	11.8	12.1	11.1	9.1
Content (%)																					
PSD(%)	Clay	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
	Silt	17.5	4.3	14.3	11.8	6.0	12.2	11.9	15.4	8.5	8.4	6.5	9.6	5.7	2.3	6.7	4.2	8.1	14.4	25.1	4.8
	Sand	88.4	86.8	90.2	90.1	93.5	90.7	87.1	83.9	89.3	88.9	91.6	86.9	93.6	88.4	88.6	89.8	91.0	94.4	89.6	90.4
PCB		52	62	53	61	57	65	55	54	51	58	52	54	52	57	59	58	52	56	57	58
Ext. nitrate		4.26	4.62	3.23	4.73	4.12	4.43	4.66	4.27	4.05	3.97	4.77	4.49	4.47	3.82	3.85	3.74	3.47	3.58	5.40	3.88
Ext. sulphate		25.0	24.6	24.6	24.7	24.9	25.0	25.5	25.1	24.4	25.6	24.6	25.6	24.8	25.1	23.8	25.3	26.2	25.0	24.9	25.0
Ext. phosphate		0.50	1.80	3.41	2.99	0.03	0.96	1.65	1.42	1.03	1.30	2.40	0.81	2.12	1.22	0.72	1.46	1.45	2.39	0.51	1.22
Phosphorus		20.1	12.2	16.3	16.1	6.1	13.1	15.9	10.1	12.0	20.0	16.4	8.1	8.4	17.0	16.2	14.0	15.3	15.1	14.5	15.9
Calcium		6.66	4.66	5.30	6.89	5.80	6.65	4.38	4.35	5.48	5.40	6.15	3.93	5.92	5.33	6.59	5.29	3.82	6.20	3.69	5.58
Magnesium		0.76	0.72	0.85	0.59	0.70	0.71	0.50	0.61	0.65	0.91	0.71	0.64	0.69	0.98	0.70	0.75	0.62	0.61	0.64	0.55
THC		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND						
Total		0.78	0.94	0.88	0.94	0.76	0.98	0.79	0.85	0.93	0.89	0.74	0.83	0.99	1.09	0.99	0.98	0.81	1.05	0.51	0.55
chromium																					
Total iron		99.0	92.9	98.2	64.2	79.8	88.1	79.7	70.3	98.6	83.4	87.2	70.8	73.9	89.8	99.3	85.8	78.8	73.7	97.2	80.5
Copper		5.84	6.82	7.07	6.45	8.08	6.70	7.38	8.76	7.09	7.13	7.75	6.05	10.14	9.34	7.27	6.99	7.80	7.32	7.11	6.93
Lead		0.26	0.22	0.29	0.18	0.27	0.23	0.28	0.29	0.21	0.26	0.24	0.15	0.22	0.30	0.21	0.14	0.30	0.16	0.25	0.24
Manganese		5.48	6.29	5.67	6.32	6.08	6.37	6.17	5.36	6.50	5.26	5.96	6.50	6.62	6.97	5.34	6.59	7.19	6.54	6.60	6.71

Nickel		0.81	0.66	0.54	0.82	0.61	0.57	0.62	0.64	0.69	0.67	0.48	0.39	0.72	0.62	0.73	0.59	0.58	0.70	0.67	0.69
Zinc		1.28	1.28	1.17	1.05	1.12	1.17	1.18	1.14	1.14	1.31	1.24	1.22	1.18	1.22	1.25	1.19	1.22	1.18	1.24	1.19
Arsenic		0.31	0.32	0.33	0.30	0.25	0.29	0.23	0.28	0.26	0.24	0.25	0.27	0.26	0.20	0.30	0.29	0.34	0.23	0.25	0.35
Mercury		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Vanadium		0.23	0.23	0.26	0.22	0.24	0.25	0.30	0.24	0.28	0.25	0.25	0.23	0.23	0.23	0.26	0.26	0.21	0.23	0.20	0.31
Cadmium		0.42	0.39	0.66	0.36	0.63	0.49	0.47	0.52	0.55	0.29	0.49	0.43	0.46	0.49	0.26	0.47	0.42	0.34	0.28	0.28
Boron		0.79	1.66	1.16	1.65	1.66	1.28	1.58	1.34	1.26	1.50	1.50	1.84	1.06	1.84	1.40	1.59	1.73	1.16	1.82	1.47
	•	•							(1	5cm - 30o	cm)	•						•			
PARAMETERS		SQ1	SQ2	SQ3	SQ4	SQ5	SQ6	SQ7	SQ8	SQ9	SQ10	SQ11	SQ12	SQ13	SQ14	SQ15	SQ16	SQ17	SQ18	SQ19	SQ20
PH		5.49	5.49	5.48	5.51	5.49	5.48	5.49	5.52	5.50	5.49	5.51	5.44	5.50	5.51	5.49	5.50	5.52	5.48	5.47	5.50
Elect.		148.2	142.0	161.3	164.1	127.9	118.7	107.9	122.0	166.2	172.9	133.2	175.4	154.1	187.6	136.0	146.4	139.8	115.7	145.4	168.9
Conductivity																					
(µS/cm)																					
Moisture		15.1	14.0	13.0	15.1	17.0	16.9	14.2	16.4	14.5	14.0	13.1	14.0	15.1	16.8	18.2	15.5	13.6	17.6	15.4	13.7
Content (%)																					
PSD(%)	Clay	1.88	2.04	2.54	2.46	2.25	2.58	3.02	3.11	2.79	2.40	2.59	1.97	2.77	2.22	3.16	3.13	2.63	2.84	2.80	2.73
	Silt	10.5	16.1	7.8	5.9	10.8	13.3	10.3	11.8	16.3	16.3	14.0	13.8	9.0	17.8	12.2	10.5	11.5	17.4	12.2	13.9
	Sand	93.9	92.0	83.3	90.7	102.8	92.8	88.3	88.4	79.4	78.6	85.9	83.4	86.7	97.7	97.7	86.1	91.1	84.5	79.6	82.0
PCB		52	43	23	34	35	21	34	35	23	26	29	32	33	23	34	21	42	27	59	57
Ext. nitrate		4.1	5.1	6.1	5.0	5.8	4.2	4.4	5.5	5.4	5.0	6.9	4.6	6.0	5.7	6.6	4.9	6.2	4.9	6.0	4.5
Ext. sulphate		22.3	23.1	21.8	23.5	22.8	23.0	23.8	23.0	23.0	23.0	22.4	23.3	22.9	23.2	23.4	21.8	23.4	22.7	21.9	23.3
Ext. phosphate		1.70	2.55	2.21	2.66	2.71	3.00	2.15	1.32	2.45	2.37	2.21	1.37	1.31	3.60	2.68	2.82	2.28	1.71	0.96	1.45
Phosphorus		12.5	14.6	17.8	6.0	15.5	12.0	12.3	13.5	14.4	11.7	12.5	21.5	14.1	12.5	17.5	14.5	15.9	15.5	13.3	10.7
Calcium		3.59	6.05	4.90	4.02	4.87	4.95	3.00	1.66	5.49	4.37	5.59	2.85	2.99	3.82	4.62	3.42	6.89	1.95	3.41	2.92
Magnesium		1.15	0.81	0.64	0.55	0.69	0.96	0.70	0.80	0.82	0.65	0.46	0.84	1.03	0.86	0.87	0.44	0.53	0.79	0.82	0.85
THC		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND								
Total		1.70	1.69	1.26	0.87	1.61	1.58	2.07	1.20	1.58	1.43	1.37	1.39	1.39	1.42	1.88	1.13	1.39	1.47	1.59	1.59
chromium																					

Total iron	111.6	107.9	123.5	127.3	121.9	130.9	113.9	122.6	138.7	103.0	125.1	122.4	119.1	136.2	111.9	119.7	108.3	106.8	141.1	131.7
Copper	7.23	4.70	6.21	6.48	9.54	9.01	6.20	9.73	8.58	7.64	7.99	9.35	7.92	8.63	6.99	5.56	8.15	6.91	8.74	4.78
Lead	0.14	0.13	0.22	0.12	0.03	0.13	0.27	0.22	0.23	0.09	0.11	0.17	0.16	0.24	0.26	0.19	0.26	0.16	0.17	0.24
Manganese	9.67	8.62	8.96	7.37	7.35	7.97	5.63	5.77	8.26	9.09	7.88	7.97	8.34	6.62	6.96	6.86	8.25	7.02	10.00	7.24
Nickel	0.80	0.70	1.00	0.98	0.89	0.95	0.90	1.01	0.92	1.08	0.97	1.08	0.93	0.83	0.97	0.73	1.05	1.20	0.96	0.92
Zinc	0.71	1.97	1.26	1.32	0.86	1.50	1.11	1.49	1.20	1.41	0.81	0.92	1.31	2.11	1.00	1.19	1.02	1.38	1.27	0.32
Arsenic	0.44	0.29	0.44	0.39	0.47	0.27	0.43	0.36	0.37	0.36	0.35	0.24	0.29	0.35	0.36	0.33	0.28	0.28	0.41	0.23
Mercury	ND																			
Vanadium	0.22	0.37	0.33	0.32	0.26	0.24	0.28	0.32	0.33	0.23	0.27	0.25	0.24	0.27	0.38	0.35	0.22	0.24	0.27	0.27
Cadmium	0.49	0.48	0.40	0.15	0.57	0.53	0.54	0.90	0.44	0.53	0.46	0.70	0.67	0.63	0.55	0.54	0.78	0.43	0.57	0.29
Boron	1.45	1.60	1.07	1.95	1.21	1.56	1.59	1.26	0.87	1.35	2.33	1.63	1.30	2.09	2.04	1.86	1.47	1.21	1.78	1.62

Soil Microbiology

SAMPLE	Total Heterotrophic	Count	Hydrocarbon	Count	Heterotrophic	Count	Hydrocarbon	Count
STATION	Bacteria	(cfu/ml)	Utilising Bacteria	(cfu/ml)	Fungi	(cfu/ml)	Utilising	(cfu/ml)
S							Fungi	
SS1 (0-	Bacillus sp	1.9 x	Bacillus sp	1.0 x	Aspergillus	2.3 x	Mucor sp	2.2 x
15cm)	Pseudonomas sp	102	Pseudonomas	102	sp	103	Penicillium sp	102
	Staphylococcus sp		sp		Mucor sp			
	Flavobacterium sp		Staphylococcus		Penicillium sp			
	Chromobacterium sp		sp		Fusarium sp			
SS1 (15-	Bacillus sp	1.7 x	Escherichia sp	1.6 x102	Aspergillus	1.41 x	Mucor sp	1.37 x
30cm)	Pseudonomas sp	102	Klebsiella sp		sp	102	Candida sp	102
	Micrococcus sp		Protues sp		Mucor sp			
	Escherichia sp				Candida sp			
	Klebsiella sp				Trichoderma			
	Protues sp				sp			
SS2(0-	Arthrobacter sp	1.92 x	Enterobacter sp	1.72 x	Rhizopus sp	1.7 x	Rhizopus sp	1.7 x 10
15cm)	Enterobacter sp	103	Micrococcus sp	102	Candida sp	102	Candida sp	
	Micrococcus sp				Trichoderma			
	Actinomyces sp				sp			
SS2(15-	Serriatia sp	2.5 x	Actinomyces sp	1.9 x	Aspergillus	1.2 x	Mucor sp	1.2 x
30cm)	Staphylococcus sp	102		102	sp	104		102

	Enterobacter sp		Flavobacterium		Mucor sp		Aspergillus	
	Actinomyces sp		sp		Penicillium sp		sp	
	Flavobacterium sp		Chromobacteriu		Fusarium sp			
	Chromobacterium sp		m sp					
SS3(0-	Bacillus sp	3.1 x 10 ³	Bacillus sp	2.1 x 10 ²	Aspergillus	1.9 x 10 ³	Penicillium sp	1.5 x 10 ³
15cm)	Pseudonomas sp		Pseudonomas		sp		Fusarium sp	
	Staphylococcus sp		sp		Penicillium sp		Rhizopus sp	
	Proteus sp				Fusariumsp			
	Arthrobacter sp				Mucor sp			
					Rhizopus sp			
					Trichoderma			
					sp			
					-			
SS3(15-	Proteus sp	1.9 x 10 ³	Escherichia sp	1.1 x 10 ³	Candida sp	2.1 x 10 ³	Mucor sp	2 x 10 ³
30cm)	Escherichia sp		Klebsiella sp		Aspergillus		Aspergillus	
	Klebsiella sp				sp		sp Candida	
	Serriatia sp				Mucor sp		sp	
	Flavobacterium sp				Penicillium sp			
					Fusarium sp			
SS4(0-	Bacillus sp	1.77 x	Staphylococcus	1.5 x 10 ²	Penicillium sp	1.2 x 10 ³	MucorspRhiz	1.1 x 10 ³
15cm)	Pseudonomas sp	10 ³	sp		Fusarium sp		opus sp	
	Staphylococcus sp						Candida sp	

	Actinomyces sp				MucorspRhiz			
					opus sp			
					Candida sp			
SS4(15-	Bacillus sp	2.0 x10 ⁵	Pseudonomas	1.0 x 10 ²	Aspergillus	1.9 x 10 ⁵	Mucor sp	1.8 x 10 ²
30cm)	Pseudonomas sp		sp		sp		Aspergillus	
	Proteus sp		Proteus sp		Mucor sp		sp	
	Enterobacter sp		Enterobacter sp		Penicillium sp		Fusarium sp	
	Serriatia sp				Fusarium sp		Penicillium sp	
							Candida sp	
SS5(0-	Bacillus sp	3.0 x 10 ²	Bacillus sp	2.2 x 10 ¹	Candida sp	4.5 x 10 ⁴	Candida sp	3.7 x 10 ⁴
15cm)	Pseudonomas sp		Pseudonomas		Aspergillus		Aspergillus	
	Proteus sp		sp		sp		sp	
	Enterobacter sp		Proteus sp		Mucor sp			
	Serriatia sp				Penicillium sp			
					Fusarium sp			
SS5(15-	Micrococcus sp	3.1 x 10 ⁵	Arthrobacter sp	1.5 x 10 ⁵	Penicillium sp	1.9 x 10 ²	Penicillium sp	1.1 x 10 ²
30cm)	Actinomyces sp		Staphylococcus		Fusarium sp		Fusarium sp	
	Arthrobacter sp		sp		MucorspRhiz		Mucor sp	
	Staphylococcus sp				opus sp			
	Flavobacterium sp				Candida sp			
SS6(0-	Proteus sp	4.1 x 10 ⁵	Staphylococcus	3 x 10 ²	Penicillium sp	4.1 x 10 ²	MucorspRhiz	4.1 x 10 ¹
15cm)			sp		Fusarium sp		opus sp	

	Arthrobacter sp		Flavobacterium		MucorspRhiz		Candida sp	
	Staphylococcus sp		sp		opus sp			
	Flavobacterium sp		Chromobacteriu		Candida sp			
	Chromobacterium sp		m sp					
SS6(15-	Pseudonomas sp	4 x 10 ²	Enterobacter sp	2.3 x 10 ²	Aspergillus	4 x 10 ²	Mucor sp	3.6 x 10 ¹
30cm)	Proteus sp		Serriatia sp		sp		Candida sp	
	Escherichia sp				Mucor sp		Trichoderma	
	Enterobacter sp				Candida sp		sp	
	Serriatia sp				Trichoderma			
					sp			
SS7(0-	Serriatia sp	4.1 x 10 ¹	Staphylococcus	1.5 x 10 ¹	Fusarium sp	1.9 x 10 ²	Penicillium sp	1.9 x 10 ¹
15cm)	Staphylococcus sp		sp		Mucor sp		Rhizopus sp	
	Enterobacter sp		Enterobacter sp		Penicillium sp		Candida sp	
	Actinomyces sp		Actinomyces sp		Rhizopus sp		Aspergillus	
	Flavobacterium sp		Flavobacterium		Candida sp		sp	
	Chromobacterium sp		sp		Aspergillus			
					sp			
SS7(15-	Proteus sp	3.6 x 10 ²	Escherichia sp	2.5 x 10 ²	Candida sp	3.5 x 10 ²	Candida sp	2.3 x 10 ²
30cm)	Escherichia sp		Klebsiella sp		Aspergillus		Aspergillus	
	Klebsiella sp		Serriatia sp		sp		sp	
	Serriatia sp				Mucor sp		Mucor sp	

	Flavobacterium sp				Penicillium sp			
					Fusarium sp			
SS8(0-	Bacillus sp	3.5 x 10 ²	Pseudonomas	2.5 x 10 ¹	Mucor sp	2.5 x 10 ²	Fusarium sp	2.1 x 10 ²
15cm)	Pseudonomas sp		sp		Penicillium sp		Rhizopus sp	
	Proteus sp		Proteus sp		Fusarium sp		Candida sp	
	Escherichia sp		Escherichia sp		Rhizopus sp			
	Klebsiella sp				Candida sp			
SS8(15-	Pseudonomas sp	4.1 x 10 ²	Micrococcus sp	1.2 x 10 ²	Aspergillus	2.6 x 10 ³	Penicillium sp	1.6 x 10 ²
30cm)	Micrococcus sp		Escherichia sp		sp			
	Escherichia sp				Mucor sp			
	Klebsiella sp				Penicillium sp			
					Fusarium sp			
SS9(0-	Serriatia sp	4.4 x 10 ³	Staphylococcus	1.1 x 10 ²	Aspergillus	3.1 x 10 ³	Mucor sp	3 x 10 ²
15cm)	Staphylococcus sp		sp		sp		Penicillium sp	
	Enterobacter sp		Enterobacter sp		Mucor sp		Fusarium sp	
	Actinomyces sp		Actinomyces sp		Penicillium sp			
	Flavobacterium sp				Fusarium sp			
	Chromobacterium sp							
SS9(15-	Bacillus sp	4.3 x 10 ²	Proteus sp	2.1 x 10 ²	Mucor sp	5.6 x 10 ³	Fusarium sp	4.7 x 10 ²
30cm)	Pseudonomas sp		Escherichia sp		Penicillium sp		Rhizopus sp	
	Proteus sp				Fusarium sp		Candida sp	
	Escherichia sp				Rhizopus sp			

	Klebsiella sp				Candida sp			
SS10(0-	Micrococcus sp	2.3 x 10 ⁴	Arthrobacter sp	1.6 x 10 ⁴	Candida sp	4.2 x 10 ²	Mucor sp	2.8 x 10 ²
15cm)	Actinomyces sp		Staphylococcus		Aspergillus		Penicillium sp	
	Arthrobacter sp		sp		sp		Fusarium sp	
	Staphylococcus sp				Mucor sp			
	Flavobacterium sp				Penicillium sp			
					Fusarium sp			
SS10(15-	Bacillus sp	3.9 x 10 ²	Micrococcus sp	3.2 x 10 ²	Rhizopus sp	3.0 x 10 ³	Trichoderma	2.5 x 10 ²
30cm)	Pseudonomas sp		Escherichia sp		Candida sp		sp	
	Micrococcus sp				Trichoderma			
	Escherichia sp				sp			
	Klebsiella sp							
SS11(0-	Arthrobacter sp	3.1 x 10 ⁵	Micrococcus sp	2.7 x 10 ⁴	Fusarium sp	2.1 x 10 ⁵	Mucor sp	1.1 x 10 ²
15cm)	Enterobacter sp				Mucor sp		Rhizopus sp	
	Micrococcus sp				Rhizopus sp		Candida sp	
	Actinomyces sp				Candida sp			
SS11(15-	Proteus sp	4.4 x 10 ⁴	Escherichia sp	1.9 x 10 ³	Aspergillus	2.9 x 10 ²	Mucor sp	1.7 x 10 ²
30cm)	Escherichia sp		Klebsiella sp		sp		Candida sp	
	Klebsiella sp		Serriatia sp		Mucor sp		Trichoderma	
	Serriatia sp				Candida sp		sp	
	Flavobacterium sp				Trichoderma			
					sp			

SS12(0-	Pseudonomas sp	2.9 x 10 ³	Escherichia sp	1.2 x 10 ²	Mucor sp	3.8 x 10 ⁴	Rhizopus sp	3.2 x 10 ⁴
15cm)	Micrococcus sp		Klebsiella sp		Penicillium sp		Candida sp	
	Escherichia sp				Fusarium sp			
	Klebsiella sp				Rhizopus sp			
					Candida sp			
SS12(15-	Pseudonomas sp	3.1 x 10 ⁴	Micrococcus sp	2.9 x 10 ²	Fusarium sp	4.7 x 10 ²	Rhizopus sp	3.2 x 10 ²
30cm)	Micrococcus sp		Escherichia sp		Mucor sp		Candida sp	
	Escherichia sp				Rhizopus sp			
	Klebsiella sp				Candida sp			
SS13(0-	Proteus sp	4.1 x 10 ³	Proteus sp	2 x 10 ²	Aspergillus	2.9 x 10 ³	Penicillium sp	2.1 x 10 ²
15cm)	Escherichia sp		Escherichia sp		sp		Fusarium sp	
	Klebsiella sp		Klebsiella sp		Mucor sp			
	Serriatia sp				Penicillium sp			
	Flavobacterium sp				Fusarium sp			
SS13(15-	Bacillus sp	2.6 x 10 ⁴	Pseudonomas	2.1 x 10 ³	Penicillium sp	3.6 x 10 ⁴	Mucor sp	2.3 x 10 ⁴
30cm)	Pseudonomas sp		sp		Fusarium sp		Rhizopus sp	
	Proteus sp		Proteus sp		Mucor sp			
	Escherichia sp		Escherichia sp		Rhizopus sp			
	Klebsiella sp				Candida sp			
SS14(0-	Arthrobacter sp	3.8 x 10 ²	Arthrobacter sp	2.4 x 10 ²	Rhizopus sp	1.5 x 10 ²	Candida sp	0.9 x 10 ²
15cm)	Enterobacter sp		Enterobacter sp		Candida sp			

	Micrococcus sp				Trichoderma		Trichoderma	
	Actinomyces sp				sp		sp	
SS14(15-	Pseudonomas sp	4.7 x 10 ²	Klebsiella sp	4.1 x 10 ²	Fusarium sp	3.9 x 10 ⁴	Mucor sp	3 x 10 ⁴
30cm)	Micrococcus sp				Mucor sp		Rhizopus sp	
	Escherichia sp				Rhizopus sp		Candida sp	
	Klebsiella sp				Candida sp			
SS15(0-	Bacillus sp	3.9 x 10 ²	Pseudonomas	3.7 x 10 ²	Candida sp	3.6 x 10 ³	Candida sp	2.1 x 10 ²
15cm)	Pseudonomas sp		sp		Aspergillus		Aspergillus	
	Micrococcus sp		Micrococcus sp		sp		sp	
	Escherichia sp		Escherichia sp		Mucor sp		Mucor sp	
	Klebsiella sp				Penicillium sp			
					Fusarium sp			
SS15(15-	Serriatia sp	3.6 x 10 ⁴	Serriatia sp	3.1 x 10 ²	Aspergillus	5.1 x 10 ²	Mucor sp	4.2 x 10 ²
30cm)	Staphylococcus sp		Staphylococcus		sp		Penicillium sp	
	Enterobacter sp		sp		Mucor sp			
	Actinomyces sp		Enterobacter sp		Penicillium sp			
	Flavobacterium sp		Actinomyces sp		Fusarium sp			
	Chromobacterium sp							
SS16(0-	Bacillus sp	3.8 x 10 ³	Proteus sp	1.7 x 10 ²	Aspergillus	4.2 x 10 ⁴	Aspergillus	3.5 x 10 ⁴
15cm)	Pseudonomas sp		Escherichia sp		sp		sp	
	Proteus sp		Klebsiella sp		Mucor sp		Mucor sp	
	Escherichia sp				Penicillium sp		Penicillium sp	

	Klebsiella sp				Fusarium sp			
SS16(15-	Bacillus sp	4.2 x 10 ²	Pseudonomas	3.6 x 10 ²	Mucor sp	4.2 x 10 ⁴	Fusarium sp	3.6 x 10 ⁴
30cm)	Pseudonomas sp		sp		Penicillium sp		Rhizopus sp	
	Proteus sp		Proteus sp		Fusarium sp		Candida sp	
	Escherichia sp		Escherichia sp		Rhizopus sp			
	Klebsiella sp		Klebsiella sp		Candida sp			
SS17(0-	Pseudonomas sp	3.2 x 10 ⁴	Pseudonomas	2.1 x 10 ³	Fusarium sp	4.8 x 10 ²	Fusarium sp	4.3 x 10 ¹
15cm)	Proteus sp		sp		Mucor sp		Mucor sp	
	Escherichia sp		Proteus sp		Penicillium sp		Penicillium sp	
	Enterobacter sp		Escherichia sp		Rhizopus sp		Rhizopus sp	
	Serriatia sp				Candida sp		Candida sp	
					Aspergillus			
					sp			
SS17(15-	Bacillus sp	3.4 x 10 ²	Pseudonomas	3.3 x 10 ²	Aspergillus	3.3 x 10 ²	Aspergillus	3 x 10 ²
30cm)	Pseudonomas sp		sp		sp		sp	
	Proteus sp		Proteus sp		Mucor sp		Mucor sp	
	Enterobacter sp		Enterobacter sp		Candida sp		Candida sp	
	Serriatia sp				Trichoderma			
					sp			
SS18(0-	Micrococcus sp	5.1 x 10 ³	Arthrobacter sp	2.9 x 10 ²	Penicillium sp	4.3 x 10 ²	Rhizopus sp	3.2 x 10 ²
15cm)			Staphylococcus		Fusarium sp		Candida sp	

Actinomyces sp		sp		Mucor sp			
Arthrobacter sp		Flavobacterium		Rhizopus sp			
Staphylococcus sp		sp		Candida sp			
Flavobacterium sp							
Bacillus sp	2.5 x 10 ³	Pseudonomas	1.5 x 10 ²	Aspergillus	3.7 x 10 ³	Aspergillussp	3.5 x 10 ²
Pseudonomas sp		sp		sp		Mucorsp	
Proteus sp		Proteus sp		Mucor sp			
Enterobacter sp		Enterobacter sp		Penicillium sp			
Serriatia sp				Fusarium sp			
Bacillus sp	4.9 x 10 ⁴	Micrococcus sp	3.5 x 10 ⁴	Aspergillus	1.3 x 10 ⁴	Candida sp	1 x 10 ⁴
Pseudonomas sp		Escherichia sp		sp		Trichoderma	
Micrococcus sp				Mucor sp		sp	
Escherichia sp				Candida sp			
Klebsiella sp				Trichoderma			
				sp			
Arthrobacter sp	3.9 x 10 ³	Arthrobacter sp	3.1 x10 ²	Aspergillus	3.7 x 10 ³	Mucor sp	3.1 x 10 ¹
Enterobacter sp		Enterobacter sp		sp		Penicillium sp	
Micrococcus sp				Mucor sp			
Actinomyces sp				Penicillium sp			
				Fusarium sp			
	Actinomyces sp Arthrobacter sp Staphylococcus sp Flavobacterium sp Bacillus sp Pseudonomas sp Proteus sp Enterobacter sp Serriatia sp Bacillus sp Pseudonomas sp Micrococcus sp Escherichia sp Klebsiella sp Arthrobacter sp Enterobacter sp Micrococcus sp Actinomyces sp	Actinomyces spArthrobacter spStaphylococcus spFlavobacterium spBacillus sp2.5 x 103Pseudonomas spProteus spEnterobacter spSerriatia spBacillus sp4.9 x 104Pseudonomas spMicrococcus spEscherichia spKlebsiella spArthrobacter spSin Arthrobacter spActinomyces spActinomyces sp	Actinomyces spspArthrobacter spFlavobacteriumStaphylococcus spspFlavobacterium spspBacillus sp2.5 x 10³Pseudonomas spProteus spProteus spEnterobacter spSerriatia sp4.9 x 10⁴Bacillus sp4.9 x 10⁴Pseudonomas spEscherichia spBacillus sp3.9 x 10³Arthrobacter sp3.9 x 10³Arthrobacter spEnterobacter spEscherichia spArthrobacter spKlebsiella sp3.9 x 10³Arthrobacter spEnterobacter spActinomyces spEnterobacter sp	Actinomyces spspArthrobacter spSpStaphylococcus spFlavobacteriumFlavobacterium spspBacillus sp2.5 x 103PseudonomasPseudonomas spProteus spProteus spEnterobacter spSerriatia sp4.9 x 104Micrococcus spBacillus sp4.9 x 104Micrococcus spBacillus sp3.5 x 104Pseudonomas spEscherichia spBacillus sp4.9 x 104Pseudonomas spSi x 104Pseudonomas spSi x 104Pseudonomas spSi x 104Pseudonomas spSi x 104Arthrobacter spSi x 103Arthrobacter spSi x 103<	Actinomyces sp Arthrobacter spsp Flavobacterium spMucor sp Rhizopus sp Candida spStaphylococcus sp Flavobacterium sp2.5 x 103Pseudonomas sp1.5 x 102Aspergillus spBacillus sp Proteus sp Enterobacter sp Serriatia sp2.5 x 103Pseudonomas Proteus sp1.5 x 102Aspergillus spBacillus sp2.5 x 103Pseudonomas sp1.5 x 102Aspergillus spProteus sp Enterobacter spProteus spMucor spBacillus sp4.9 x 104Micrococcus sp3.5 x 104Aspergillus spBacillus sp4.9 x 104Micrococcus sp3.5 x 104Aspergillus spBacillus sp4.9 x 104Micrococcus sp3.5 x 104Aspergillus spBacillus sp3.9 x 103Arthrobacter sp3.1 x102Aspergillus spArthrobacter sp3.9 x 103Arthrobacter sp3.1 x102Aspergillus spArthrobacter spArthrobacter spSpMucor spSpArthrobacter spArthrobacter spSpMucor spSpMicrococcus spSpSpSpSpSpArthrobacter spSpSpSpSpSpMicrococcus spSpSpSpSpSpActinomyces spSpSpSpSpSpMicrococcus spSpSpSpSpSpMicrococcus spSpSpSpSpSpMicrococcus spSpSpSpSpSp<	Actinomyces sp Arthrobacter spsp Flavobacterium spMucor sp Rhizopus spStaphylococcus sp Flavobacterium spSpCandida spBacillus sp2.5 x 103Pseudonomas sp1.5 x 102Aspergillus sp3.7 x 103Pseudonomas sp Proteus spSpProteus spMucor sp Proteus spSpMucor sp Penicillium spBacillus sp4.9 x 104Micrococcus sp Escherichia sp3.5 x 104Aspergillus Sp1.3 x 104Pseudonomas sp Micrococcus sp4.9 x 104Micrococcus sp Escherichia sp3.5 x 104Aspergillus Sp1.3 x 104Arthrobacter sp3.9 x 103Arthrobacter spSi x 102Aspergillus Sp3.7 x 103Arthrobacter sp3.9 x 103Arthrobacter spSi x 102Aspergillus Sp3.7 x 103Arthrobacter spAspergillus Fusarium sp3.1 x 102Aspergillus Sp3.7 x 103Arthrobacter sp Actinomyces spSi x 103Arthrobacter sp Fusarium spSi x 103Arthrobacter sp Micrococcus sp<	Actinomyces sp Arthrobacter sp Staphylococcus sp Flavobacterium spspMucor sp Rhizopus sp Candida spBacillus sp Pseudonomas sp Proteus sp Enterobacter sp2.5 x 103 SpPseudonomas Sp1.5 x 102 SpAspergillus Sp3.7 x 103 Mucor spBacillus sp Proteus sp Enterobacter sp2.5 x 103 Proteus spPseudonomas Sp1.5 x 102 Proteus spAspergillus Sp3.7 x 103 Mucor spBacillus sp Enterobacter sp4.9 x 104 Enterobacter spMicrococcus sp Escherichia sp3.5 x 104 Micrococcus spAspergillus Sp1.3 x 104 SpBacillus sp Pseudonomas sp Micrococcus sp4.9 x 104 Escherichia spMicrococcus sp Sp3.5 x 104 SpAspergillus Sp1.3 x 104 SpArthrobacter sp Enterobacter sp3.9 x 103 Enterobacter spArthrobacter sp Enterobacter sp3.1 x 102 SpAspergillus Sp3.7 x 103 Pseudonomas spMicrococcus sp Enterobacter sp Actinomyces sp3.9 x 103 Enterobacter spArthrobacter sp Enterobacter sp3.1 x 102 SpAspergillus Sp3.7 x 103 Pseudilium sp

SS20(0-	Proteus sp	4.8 x 10 ⁴	Escherichia sp	4.5 x 10 ⁴	Rhizopus sp	4.9 x 10 ⁴	Candida sp	4.2 x 10 ⁴
15cm)	Escherichia sp		Klebsiella sp		Candida sp		Trichoderma	
	Klebsiella sp		Serriatia sp		Trichoderma		sp	
	Serriatia sp				sp			
	Flavobacterium sp							
SS20(15-	Arthrobacter sp	4.7 x 10 ³	Enterobacter sp	2.1 x 10 ²	Mucor sp	2.7 x 10 ³	Mucor sp	2.1 x 10 ²
30cm)	Enterobacter sp		Micrococcus sp		Penicillium sp		Penicillium sp	
	Micrococcus sp				Fusarium sp			
	Actinomyces sp				Rhizopus sp			
					Candida sp			

Appendix 6.3

Flora checklist

S/N	Species	Common	Protecte	References	IUC	Habit	Famil	Avera																
		name	d in	on Protected	N		у	ge					De	ens	ity	in	Bla	ank	et					Average
			Nigeria/R	species	stat																			Density
			eserves		us			DBH	V	V	V	V	V	V	V	V	V	' V	V	V	V	V	V	1
								(cm)	4	5	6	7	8	9	1	1	1	1	1	1	1	1	1	
															0	1	2	3	4	5	6	7	8	
1.	Abrus sp	Jequirity			LC	Н	Faba	5											1					1
		brean					ceae																	
2.	Acacia	White			LC	Т		8								1								1
	albida	acacia																						
З.	Acacia seyal	Shittah			LC	Т		6						1										1
		tree																						
4.	Acanthus	Bear's			LC	S	Acant	4		1	1													1
	montanus	breech					hacea																	
							е																	
5.	Aerangis	Aerangis			NE	С	Orchi	2	+	1			1	1								1		1
	biloba						dacea																	
							е																	
6.	Afzelia sp	Doussle	Protected	Edet, <i>et al.,</i>	VU	Т	Faba	7	1	1		1	1	1	1	1	1		1	1			1	1
			(P) Oban	(2012)			ceae																	

7	Agoratum	Cost	, Afi forests	Aigbe & Omokhua, (2015) Omokhua, (2015)	NE		Acror	2	2		2						2
1.	conizoides	weed	(F) Okomu reserve	Osemwegie, (2007)	INE	П	aceae	Z	Z		2						2
8.	Albizia lebbeck	Flat- crown	(P) Okomu, Okwang wo reserves	Osemwegie, (2007) Williams, (2008) Adeyemi, et al., (2015)	LC	Т	Mimos oideae	19						1		1	1
9.	Albizia zygia	West African Albizia	(P) Oban , Afi, Okwang wo forests	Edet, <i>et al.,</i> (2012) Aigbe & Omokhua, (2015)	NE	Т	Mimos oideae	18	1	2			1				1

			Williams, (2008) Omokhua, (2015)																		
10.	Alchornea	Christma		NE	Т	Eupho	12	1	2	1	2	3	2	1		1	2	2		1	2
	corunona	S DUSI				ae															
11.	Anchomane	Forest		NE	S	Areac	7		1	1		2									2
	s giganteus	anchoma				eae															
		nes																			
12.	Andropogon	Broomse		LC	G	poace	2					1			2						2
	citrata	dge				ae															
		bluestem																			
13.	Anielema sp	Anielem		NE	S	Com	6										1			1	1
		а				melina															
						ceae															
14.	Annona	wild		NE	S	Annon	2		1	1											1
	muricata	custard-				aceae															
		apple																			
15.	Anthocarpus	Anthocar		LC	S	Aspar	3													1	1
	preissi	pus				agace															
						ae															

16.	Anthocleista	Cabbage	(P) Oban,	Williams,	NE	Т	Logani	15				1		1	2			2
	djalonensis	tree	Okwang	(2008)			aceae											
			wo forest	Aigbe &														
				Omokhua,														
				(2015)														
				Omokhua,														
				(2015)														
17.	Anthocliesta	Cabbage			NE	Т	Logani	16		2			1					2
	grandiflora	tree					aceae											
18.	Anthocliesta	Cabbage			NE	Т	Logani	10			2	2				2		2
	nobilis	palm					aceae											
19.	Antidesma				NE	Т	Euph	8									1	1
	venosum						orbiac											
							eae											
20.	Aspilia	Wild sun			NE	Н	Aster	2			2	2						2
	africana	flower					aceae											
21.	Azadirashta	Neem			NE	Т	Melia	11					2					3
	indica						ceae											
22.	Bambusa	Indian			NE	Т	Poace	10		3	3			2	3		2	3
	vulgaris	bamboo					ae											

23.	Baphia	Camwoo	(P) Oban,	Williams,	LC	S	Papilio	10									1	1	
	nitida	d	Okwang	(2008)			noidea												
			wo	Aigbe &			е												
			forests	Omokhua,															
				(2015)															
				Omokhua,															
				(2015)															
24.	Bauhinia				LC	Т	<u>Faba</u>	12			1	1						1	
	purpurea						ceae												
25.	Berlinia	Berlinia			LC	Т	Caesl	18		1								1	
	bracteosa						pinoid												
							eae												
26.	Cyathea	Tre fern			NE	Т	C <u>yath</u>	9		1	1		1	1		1	1	1	
	australis						eacea												
							<u>e</u>												
27.	Ceiba	Silk			LC	Т	Malva	20							1			2	
	pentandra	Cotton					ceae												
		Tree																	
28.	Chromolaen	Siam	(P)	ldu&	NE	S	Astera	8	2	2	2			2	1	3	2	2	
	a odorata	weed	Okomu	Osemwegie,			ceae												
			reserve	(2007)															

29.	Cola spp	kola	(P) Oban,	Williams,	NE	Т	Stercu	19			1							1
			Okwang	(2008)			liactea											
			wo	Aigbe			е											
			forests	&Omokhua,														
				(2015)														
				Omokhua,														
				(2015)														
30.	Combretum	Velvet			NE	S	Combr	7				1						2
	racemosa	bush					etacea								2			
		willow					е											
31.	Combretum	Bushwillo			NE	С	Combr	3						1	2			2
	tomentosum	WS					etacea											
							е											
32.	Commelina	Birdbill			LC	Н	Comm	6	+	+	2							1
	africana	Dayflowe					elinac											
		r					eae											
33.	Corypha	Talipot			DD	Т	<u>Arec</u>	9					1					1
	umbraculifer	palm					<u>aceae</u>											
	а																	
34.	Dalbergia	Coinvine	(P)	Aigbe &	VU	Т	Fabac	12								1		1
	latifolia		Oban	Omokhua,			eae											
			forest	(2015)														

			Omokhua,																	
			(2015)																	
Dalbergia				NE	Т		10		1				1		1					1
sissoo																				
Daniellia	African	(P) Oban	Aigbe &	NT	Т		10					1							1	1
oliveri	copaiba	forest	Omokhua,																	
	balsam		(2015)																	
	tree		Omokhua,																	
			(2015)																	
Dialium	Black	(P) Afi	Edet, et al.,	NE	Т	Caesa	17		•	1			1		1					1
guineense	velevet	forest	(2012)			Ipinioi														
						deae														
Diospyrous	African	(P) Oban	Edet, et al.,	NE	Т	Ebena	12		1				1							1
sp	ebony	, Afi ,	(2012)			ceae														
		Okwang	Aigbe &																	
		wo	Omokhua,																	
		forests	(2015)																	
			Williams,																	
			(2008)																	
			Omokhua,																	
	Dalbergia sissoo Daniellia oliveri Dialium guineense Diospyrous sp	DalbergiaSissooDanielliaAfricanolivericopaibabalsamtreeDialiumBlackguineenseVelevetDiospyrousAfricanspebony	DalbergiaImage: sissooImage: sissooDanielliaAfrican(P) ObanolivericopaibaforestbalsamtreeImage: sissooDialiumBlack(P) AfiguineensevelevetforestDiospyrousAfrican(P) Obanspebony, Afi ,Okwangwoforests	Image: series of the series	Image: section of the section of th	DalbergiaImage: constraint of the systemOmokhua, (2015)Image: constraint of the systemDalbergiaImage: constraint of the systemImage: constraint of the systemNETsissooImage: constraint of the systemAfrican(P) ObanAigbe &NTTDanielliaAfrican(P) ObanAigbe &NTTTolivericopaibaforestOmokhua,(2015)Image: constraint of the systemImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemDialiumBlack(P) AfiEdet, et al., (2012)NETDiospyrousAfrican(P) ObanEdet, et al., (2012)NETpiospyrousAfrican(P) ObanEdet, et al., (2012)NETspebony, Afi , (2012)(2012)Image: constraint of the systemImage: constraint of the systemvielimage: constraint of the systemimage: constraint of the systemimage: constraint of the systemImage: constraint of the systembiospyrousAfrican(P) ObanEdet, et al., (2012)NETspebony, Afi , (2015)(2015)Image: constraint of the systemimage: constraint of the system	Dalbergia sissooImage: sissooOmokhua, (2015)Image: sissooNETDaniellia oliveriAfrican(P) Oban 	Dalbergia sissooImage: signal signal signal signal signal balsam(P) ObanAigbe & reference signal balsamNET10Daniellia oliveriAfrican copaiba(P) ObanAigbe & reference signal balsamNTT10Dialium guineenseBlack(P) AfiEdet, et al., reference signal balsamNETCaesa17Dialium spBlack(P) AfiEdet, et al., reference signal balsamNETCaesa17Dialium spBlack(P) AfiEdet, et al., reference signal balsamNETCaesa17Dialium spBlack(P) ObanEdet, et al., reference signal balsamNETEbena12Dialium spAfrican(P) ObanEdet, et al., reference signal balsamNETEbena12Diospyrous spAfrican(P) ObanEdet, et al., reference signal balsamNETEbena12Diospyrous spAfrican reference signal balsam reference signal balsam reference signal balsam reference signal balsam reference signal balsam reference signal balsam reference signal ba	Dalbergia sissooImage: Comokhua, (2015)NEImage: Comokhua, (2015)NETDalbergia sissooImage: Comokhua, forestNETImage: Comokhua, (2015)Image: Comokhua, (2012)Image: Comokhua, (2013)Image: Comokhua, (2013)Image: Comokhua, (2013)Image: Comokhua, (2013)Image: Comokhua, (2008)Image: Comokhua, (2008)Image: Comokhua, (2008)Image: Comokhua, (2008)Image: Comokhua, (2008)Image: Comokhua, (2008)Image: Comokhua, (2008)Im	Dalbergia sissooComokhua, (2015)NETDalbergia sissooNETsissooNETDaniellia oliveri treeAfrican forest tree(P) Oban (2015) (2015)Aigbe & Omokhua, (2015)NTT101Dialium guineenseBlack velevet(P) Afi forest forestEdet, et al., (2012)NETCaesa teae171Dialium spAfrican ebony(P) Oban forestEdet, et al., (2012)NETCaesa teae171Dialium spAfrican ebony(P) Oban forestsEdet, et al., (2012)NETEbena teae121Diospyrous spAfrican (P) Oban torest(2012)NETEbena teae121Diospyrous pow (Afi, forests(2015)NETEbena teae121Villiams, (2008) Omokhua,NETEbena teae121	Dalbergia Image: sissoo Omokhua, (2015) NE T Image: sissoo Im	Dalbergia Sissoo Image: Company (2015) NE T Image: Company (2015) Image: Company (2015)<	Image: Construction of the system o	Dalbergia sissoo African (P) Oban Aigbe & (2015) NE T 10 1 1 1 1 Dalbergia sissoo African (P) Oban Aigbe & (2015) NT T 10 1	Dalbergia Sissoo Image: Sissoo	Dalbergia Sissoo Sissoo NE T 10 1	Dalbergia Omokhua, (2015) NE T 10 I<	Dalbergia sissoo Comokhua, (2015) NE T 10 I </td <td>Dalbergia sissoo See 1 See 1</td> <td>Dailbergia sissoo Same (2015) NE T Dailbergia sissoo Same (2015) NE T Daniellia oliveri balsam tree (P) Oban (2015) Aigbe & NT T Daniellia oliveri balsam (P) Oban (2015) Omokhua, (2015) NE T Dialium guineense Black (P) Afit (P) Afit (2012) Edet, et al., (2012) NE T Caesa (P) Afit (2012) 1 I <</td>	Dalbergia sissoo See 1	Dailbergia sissoo Same (2015) NE T Dailbergia sissoo Same (2015) NE T Daniellia oliveri balsam tree (P) Oban (2015) Aigbe & NT T Daniellia oliveri balsam (P) Oban (2015) Omokhua, (2015) NE T Dialium guineense Black (P) Afit (P) Afit (2012) Edet, et al., (2012) NE T Caesa (P) Afit (2012) 1 I <

39.	Elaeis	African	(P)	ldu&	LC	Т	Areca	20	1	2	2	2		3					2		1 2	
	guineensis	oil palm	Okomu	Osemwegie,			ceae															
			reserve	(2007)																		
40.	Eluecine	Goosegr			NE	G		2			+										+	
	indica	ass																				
41.	Ephioglossu	Old-world			NE	F	<u>Ophio</u>	4	+	1			+	1							1	
	m pendulum	adder's-					<u>glossa</u>															
		tongue					<u>ceae</u>															
42.	Ficus	Sandpap	(P) Afi,	Edet et al.,	NE	S	Morac	8			1										1	
	exasperata	er fig	OkomuO	(2012)			eae															
			kwangwo	Osemwegie,																		
			reserves	(2007)																		
				Williams,																		
				(2008)																		
				Adeyemi, et																		
				al., (2015)																		
43.	Ficus				NE	Т	Morac	10	+						+			1		+	1	
	leprieuri						eae															
44.	Ficus sur	Cape fig			NE	Т	Morac	16	1		1	2	1								1 1	
							eae															

1
2 2
1 1
1 1

				Williams, (2008) Omokhua, (2015)														
53.	Lophira Ianceolata	Red iron wood tree			NE	Т		14			2							2
54.	Machaerium scleroxylon	Pau ferro			LC	Т	Faba ceae	15				1	1		4	2		2
55.	Milicia excelsa	African teak, Iroko	(P) Okomu, Oban forest reserves	Idu&Osemwe gie, (2007) Aigbe & Omokhua, (2015) Omokhua, (2015)	NT	Т	Malva ceae	19						1				1
56.	Mimosa pudica	Sensitive plant, Touch me not			LC	Н	Faba ceae	7	2	+							1	2
57.	Mitragyna speciosa	Kratom			NE	Т	Rubia ceae	19		1						1		1

58.	Musanga	Umbrella	(P) Afi,	Edet, et al.,	NE	Т	Morac	12												1 1
	cecropioides	Tree	Okwang	(2012)			eae													
			wo	Williams,																
			forests	(2008)																
59.	Mussaenda				NE	S	Rubia	8	+											+
	elegens						ceae													
60.	Nephrolepsi	Giant			LC	F	Nephr	4					1	2	3					2
	s biserrata	sword					olepid													
		fern					aceae													
61.	Newbouldia	tree of	(P) Oban,	Williams,	NE	Т	Bigno	14										1	1	1
	laevis	life	Okwang	(2008)			nacea													
			wo	Aigbe &			е													
			forests	Omokhua,																
				(2015)																
				Omokhua,																
				(2015)																
62.	Panicum	Panic			NE	G	Poac	3		3	1	3		2	2				2	2 2
	maximum	grass					eae													
63.	Parkinsonia	Jerusale			NE	Т	Faba	12											1	1 1
	aculeata	m thorn					ceae													
64.	Paspalum	Knot			LC	G		2									+		-	+ 1
	distichum	grass																		

65.	Pennisetum	Elephant			LC	Н	Poace	3					1	1		1	1	
	purpureum	grass,					ae											
		Napier																
		grass																
66.	Pentaclethra	African	(P) Oban	Edet, <i>et al.,</i>	NE	Т	Mimos	13							1		1	
	macrophylla	oil bean	, Afi	(2012)			oideae											
			forests	Aigbe &														
				Omokhua,														
				(2015)														
				Omokhua,														
				(2015)														
67.	Phylanthus	Baronian			NE	Н	Phylla	3					1				1	
	amarus	us					nthace											
68.	Phyllantus	Gale of			NE	Н	ae	2								1	1	
	niruri	the wind																
69.	Phymatodes	Monarch			NE	F	Polyp	2				1		1				
	swlopendria	fern,					odiace										1	
		Musk					ae											
		fern																
70.	Platycerium	Staghorn			NE	F]	2	+	1			1				1	
	spp	fern																

71.	Polypodium leucotomos				NE	F		2		1		1								+	1
72.	Pterocarpus		(P)	Williams,	LC	Т	Faba	12	1	1			1			1	1	1		1	1
	lucens		Okwang wo forest	(2008)			ceae														
73	Ranhia	Raphia				Т	Areca	15			 2		_	_	3	_	2		_		3
	hookeri	palm					сеа								Ū						
74.	Rauvolfia	Devil's			NE	Т	Аросу	10											1		1
	sandwicensi	pepper					nacea														
	S						е														
75.	Ricinodendr		(P) Oban	Edet, et al.,	VU	Т	Eupho	11						1							1
	on sp		, Afi,	(2012)			rbiace														
			Okwang	Aigbe &			ae														
			wo	Omokhua,																	
			forests	(2015)																	
				Williams,																	
				(2008)																	
				Omokhua,																	
				(2015)																	
76.	Salacia	Salacia			NE	Н	<u>Celast</u>	2			1										1
	reticulata						racea														
							<u>e</u>														

77.	Selaginella	Meadow			NE	Н	<u>Selagi</u>	2	1									1
	apoda	spikemos					<u>nellac</u>											
		S					<u>eae</u>											
78.	Sericanth				EN	Т	Rubia	10						1				1
	Centraliti						ceae											
79.	Sida acuta	Wirewee			NE	Н	Malva	3						2		2	2	2
		d					ceae											
80.	Spondias	Yellow	(P)	ldu&	NE	Т	Eupho	10							'	1		1
	spp	mombin	Okomu	Osemwegie,			biacea											
			reserve	(2007)			е											
81.	Stachytarph	Blue			NE	Н	Verbe	3								1	1	1
	eta indica	porterwe					nacea											
		ed					е											
82.	Symphonia	Chew			DD	Т	Clusi	9				1						1
	globulifera	stick					aceae											
83.	Tabernamon	Pinwheel			NE	Т	Аросу	15								2		2
	tana	flowe					nacea											
	divaricata						е											
84.	Terminalia	Country-			NE	Т		13					1					1
	catappa	almond																

85.	Terminalia	Shinglew	(P) Oban	Edet, et al.,	NE	Т	Combr	11	1	1		1	1				1	2	2 1
	superba	ood	, Afi,	(2012)			etacea												
			Okwang	Aigbe &			е												
			wo	Omokhua,															
			forests	(2015)															
				Williams,															
				(2008)															
				Omokhua,															
				(2015)															
86.	Tetrapleura	Aridan	(P) Oban	Edet, <i>et al.,</i>	NE	Т	Faba	9										1	1
	tetraptera		, Afi	(2012)			ceae												
			forests	Aigbe &															
				Omokhua,															
				(2015)															
				Omokhua,															
				(2015)															
87.	Thalia	Powdery			NE	Н	Mara	4								1			1
	dealbata	alligator-					ntacea												
		flag					е												
88.	Thaumatoco	Miracle			NE	Η		3	1		2			2	1		1		1
	ccus daniellii	fruit																	

89.	Triplochiton	African	(P) Oban,	Aigbe &	LC	Т		19		1					1
	scleroxylon	white	Okomu	Omokhua,			Malva								
		wood	forest	(2015)			ceae								
			reserves	ldu&											
				Osemwegie,											
				(2007)											
				Omokhua,											
				(2015)											
90.	Urena lobata	Caesarw	(P)	Idu&Osemwe	NE	S		6						1	1
		eed	Okomu	gie, (2007)											
			reserve												
91.	Vitex agnus-	Chastebe			NE	Н	Lamia	3		1		1	1		1
	castus	rry,					ceae								
		Abraham'													
		s balm,													
		lilac													
		chastetre													
		e, or													
		monk's													
		pepper													